ImageNet dataset介绍

ImageNet 是一个计算机视觉系统识别项目, 是目前世界上图像识别最大的数据库。是美国斯坦福的计算机科学家,模拟人类的识别系统建立的。能够从图片识别物体。ImageNet是一个非常有前景的研究项目,未来用在机器人身上,就可以直接辨认物品和人了。超过1400万的图像URL被ImageNet手动注释,以指示图片中的对象;在至少一百万个图像中,还提供了边界框。ImageNet包含2万多个类别; 一个典型的类别,如“气球”或“草莓”,包含数百个图像。

一、下载

直接去数据集官网​​​​​​​,选择下载即可

注:可以单独下载某类

二、数据集说明

ISLVRC使用的公开数据集是Imagenet的子集,就以2012年ILSVRC分类数据集为例,其中训练集为128167张图片+标签,验证机为50000张图片+标签,用于最终淡粉的测试集为100000张图片(无标签),数据1000个不同的类别。

比赛项目:图像分类(CLS),目标定位(LOC),目标检测(DET),视频目标检测(VID),场景分类

数据类别

{0: 'tench, Tinca tinca',
 1: 'goldfish, Carassius auratus',
 2: 'great white shark, white shark, man-eater, man-eating shark, Carcharodon carcharias',
 3: 'tiger shark, Galeocerdo cuvieri',
 4: 'hammerhead, hammerhead shark',
 5: 'electric ray, crampfish, numbfish, torpedo',
 6: 'stingray',
 7: 'cock',
 8: 'hen',
 9: 'ostrich, Struthio camelus',
 10: 'brambling, Fringilla montifringilla',
 11: 'goldfinch, Carduelis carduelis',
 12: 'house finch, linnet, Carpodacus mexicanus',
 13: 'junco, snowbird',
 14: 'indigo bunting, indigo finch, indigo bird, Passerina cyanea',
 15: 'robin, American robin, Turdus migratorius',
 16: 'bulbul',
 17: 'jay',
 18: 'magpie',
 19: 'chickadee',
 20: 'water ouzel, dipper',
 21: 'kite',
 22: 'bald eagle, American eagle, Haliaeetus leucocephalus',
 23: 'vulture',
 24: 'great grey owl, great gray owl, Strix nebulosa',
 25: 'European fire salamander, Salamandra salamandra',
 26: 'common newt, Triturus vulgaris',
 27: 'eft',
 28: 'spotted salamander, Ambystoma maculatum',
 29: 'axolotl, mud puppy, Ambystoma mexicanum',
 30: 'bullfrog, Rana catesbeiana',
 31: 'tree frog, tree-frog',
 32: 'tailed frog, bell toad, ribbed toad, tailed toad, Ascaphus trui',
 33: 'loggerhead, loggerhead turtle, Caretta caretta',
 34: 'leatherback turtle, leatherback, leathery turtle, Dermochelys coriacea',
 35: 'mud turtle',
 36: 'terrapin',
 37: 'box turtle, box tortoise',
 38: 'banded gecko',
 39: 'common iguana, iguana, Iguana iguana',
 40: 'American chameleon, anole, Anolis carolinensis',
 41: 'whiptail, whiptail lizard',
 42: 'agama',
 43: 'frilled lizard, Chlamydosaurus kingi',
 44: 'alligator lizard',
 45: 'Gila monster, Heloderma suspectum',
 46: 'green lizard, Lacerta viridis',
 47: 'African chameleon, Chamaeleo chamaeleon',
 48: 'Komodo dragon, Komodo lizard, dragon lizard, giant lizard, Varanus komodoensis',
 49: 'African crocodile, Nile crocodile, Crocodylus niloticus',
 50: 'American alligator, Alligator mississipiensis',
 51: 'triceratops',
 52: 'thunder snake, worm snake, Carphophis amoenus',
 53: 'ringneck snake, ring-necked snake, ring snake',
 54: 'hognose snake, puff adder, sand viper',
 55: 'green snake, grass snake',
 56: 'king snake, kingsnake',
 57: 'garter snake, grass snake',
 58: 'water snake',
 59: 'vine snake',
 60: 'night snake, Hypsiglena torquata',
 61: 'boa constrictor, Constrictor constrictor',
 62: 'rock python, rock snake, Python sebae',
 63: 'Indian cobra, Naja naja',
 64: 'green mamba',
 65: 'sea snake',
 66: 'horned viper, cerastes, sand viper, horned asp, Cerastes cornutus',
 67: 'diamondback, diamondback rattlesnake, Crotalus adamanteus',
 68: 'sidewinder, horned rattlesnake, Crotalus cerastes',
 69: 'trilobite',
 70: 'harvestman, daddy longlegs, Phalangium opilio',
 71: 'scorpion',
 72: 'black and gold garden spider, Argiope aurantia',
 73: 'barn spider, Araneus cavaticus',
 74: 'garden spider, Aranea diademata',
 75: 'black widow, Latrodectus mactans',
 76: 'tarantula',
 77: 'wolf spider, hunting spider',
 78: 'tick',
 79: 'centipede',
 80: 'black grouse',
 81: 'ptarmigan',
 82: 'ruffed grouse, partridge, Bonasa umbellus',
 83: 'prairie chicken, prairie grouse, prairie fowl',
 84: 'peacock',
 85: 'quail',
 86: 'partridge',
 87: 'African grey, African gray, Psittacus erithacus',
 88: 'macaw',
 89: 'sulphur-crested cockatoo, Kakatoe galerita, Cacatua galerita',
 90: 'lorikeet',
 91: 'coucal',
 92: 'bee eater',
 93: 'hornbill',
 94: 'hummingbird',
 95: 'jacamar',
 96: 'toucan',
 97: 'drake',
 98: 'red-breasted merganser, Mergus serrator',
 99: 'goose',
 100: 'black swan, Cygnus atratus',
 101: 'tusker',
 102: 'echidna, spiny anteater, anteater',
 103: 'platypus, duckbill, duckbilled platypus, duck-billed platypus, Ornithorhynchus anatinus',
 104: 'wallaby, brush kangaroo',
 105: 'koala, koala bear, kangaroo bear, native bear, Phascolarctos cinereus',
 106: 'wombat',
 107: 'jellyfish',
 108: 'sea anemone, anemone',
 109: 'brain coral',
 110: 'flatworm, platyhelminth',
 111: 'nematode, nematode worm, roundworm',
 112: 'conch',
 113: 'snail',
 114: 'slug',
 115: 'sea slug, nudibranch',
 116: 'chiton, coat-of-mail shell, sea cradle, polyplacophore',
 117: 'chambered nautilus, pearly nautilus, nautilus',
 118: 'Dungeness crab, Cancer magister',
 119: 'rock crab, Cancer irroratus',
 120: 'fiddler crab',
 121: 'king crab, Alaska crab, Alaskan king crab, Alaska king crab, Paralithodes camtschatica',
 122: 'American lobster, Northern lobster, Maine lobster, Homarus americanus',
 123: 'spiny lobster, langouste, rock lobster, crawfish, crayfish, sea crawfish',
 124: 'crayfish, crawfish, crawdad, crawdaddy',
 125: 'hermit crab',
 126: 'isopod',
 127: 'white stork, Ciconia ciconia',
 128: 'black stork, Ciconia nigra',
 129: 'spoonbill',
 130: 'flamingo',
 131: 'little blue heron, Egretta caerulea',
 132: 'American egret, great white heron, Egretta albus',
 133: 'bittern',
 134: 'crane',
 135: 'limpkin, Aramus pictus',
 136: 'European gallinule, Porphyrio porphyrio',
 137: 'American coot, marsh hen, mud hen, water hen, Fulica americana',
 138: 'bustard',
 139: 'ruddy turnstone, Arenaria interpres',
 140: 'red-backed sandpiper, dunlin, Erolia alpina',
 141: 'redshank, Tringa totanus',
 142: 'dowitcher',
 143: 'oystercatcher, oyster catcher',
 144: 'pelican',
 145: 'king penguin, Aptenodytes patagonica',
 146: 'albatross, mollymawk',
 147: 'grey whale, gray whale, devilfish, Eschrichtius gibbosus, Eschrichtius robustus',
 148: 'killer whale, killer, orca, grampus, sea wolf, Orcinus orca',
 149: 'dugong, Dugong dugon',
 150: 'sea lion',
 151: 'Chihuahua',
 152: 'Japanese spaniel',
 153: 'Maltese dog, Maltese terrier, Maltese',
 154: 'Pekinese, Pekingese, Peke',
 155: 'Shih-Tzu',
 156: 'Blenheim spaniel',
 157: 'papillon',
 158: 'toy terrier',
 159: 'Rhodes
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值