numpy.mean() 对于axis的理解

本文详细介绍了numpy库中mean()函数在处理三维数组时如何根据axis参数进行平均计算。通过示例展示了对单一轴以及多个轴进行平均操作的效果,特别适用于气象栅格数据的处理。对于axis=0、1、2的平均运算,以及对任意两个轴的组合运算,均有清晰的解释和代码展示。
摘要由CSDN通过智能技术生成

本文转载于链接:https://blog.csdn.net/Zed__H/article/details/81366073

1.numpy.mean() 函数功能

numpy.mean(a, axis=None, dtype=None, out=None, keepdims=)
最重要的是对axis的理解,尤其是二维和三维数组,针对气象栅格数据处理时尤为重要,直接上代码!本文对原作顺序做出稍微调整,以便更好的理解!

2. 对axis的理解

(1)构建三维数组

>>> a = np.arange(30).reshape(2,3,5)
>>> a
array([[[ 0,  1,  2,  3,  4],
        [ 5,  6,  7,  8,  9],
        [10, 11, 12, 13, 14]],
        
       [[15, 16, 17, 18, 19],
        [20, 21, 22, 23, 24],
        [25, 26, 27, 28, 29]]])

(2)对单一轴(axis=0,1,2)求平均

>>> np.mean(a,0)   #沿axis=0的轴分别运算平均,剩下的shape 为(axis=1,axis=2)的维度(3,5)
array([[ 7.5,  8.5,  9.5, 10.5, 11.5],
       [12.5, 13.5, 14.5, 15.5, 16.5],
       [17.5, 18.5, 19.5, 20.5, 21.5]])
>>> np.mean(a,1)  #沿axis=1的轴分别运算平均,剩下的shape 为(axis=0,axis=2)的维度(2,5)
array([[ 5.,  6.,  7.,  8.,  9.],
       [20., 21., 22., 23., 24.]])
>>> np.mean(a,2)    #沿axis=2的轴分别运算平均,剩下的shape 为(axis=0,axis=1)的维度(2,3)
array([[ 2.,  7., 12.],
       [17., 22., 27.]])

(2)对其中两个轴求平均

>>> np.mean(a,(0,1))   #分别沿axis=0, axis=1的轴分别运算平均,剩下的shape 为axis=2的维度(5,)
array([12.5, 13.5, 14.5, 15.5, 16.5])
>>> np.mean(a,(0,2)) #分别沿axis=0,axis=2的轴分别运算平均,剩下的shape 为(axis=1,)的维度(3,)
array([ 9.5, 14.5, 19.5])
>>> np.mean(a,(1,2)) #分别沿axis=1,axis=2的轴分别运算平均,剩下的shape 为(axis=0,)的维度(2,)
array([7],[22])
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值