回归分析
一元线性回归分析
基本定义
假设随机变量y和变量x之间服从以下线性关系
y=α+βx+ε
现存在n个值
yi=α+βxi+εi
假设 εi 相互独立而且满足
εi ~ N(0,σ2),i=1,...,n,
则称变量y和x服从一元线性回归模型(或一元线性正态回归模型)
未知参数估计
(1) (α,β)的最小二乘估计
偏微分最小估计
∑ni=1(yi−α⌢−β⌢xi)2=maxα,β(yi−α−βxi)2
对左边求偏导,得到
α⌢=y¯−β⌢x¯ ,
β⌢=∑ni=1(xi−x¯)(yi−y¯)∑ni=1(xi−x¯)2
(2) (α,β)的极大似然估计
由于 yi相互独立,且yi ~ N(α+βxi,σ2)
则联合概率密度为
L=∏Ni=11σ2π√exp[−12σ2(yi−α−βxi)2]
=(1σ2π√)nexp[−12σ2∑ni=1