Mtalab统计信息处理的一些原理

本文介绍了Matlab中进行统计信息处理的一元和多元线性回归分析,包括最小二乘估计和极大似然估计。同时,深入探讨了高阶统计量的理论,如特征函数、累积量和高阶累积量,并讨论了它们在处理非线性系统和抑制高斯噪声中的作用。
摘要由CSDN通过智能技术生成

回归分析


一元线性回归分析

基本定义

假设随机变量y和变量x之间服从以下线性关系
y=α+βx+ε

现存在n个值
yi=α+βxi+εi

假设 εi 相互独立而且满足
εi ~ N(0,σ2),i=1,...,n,
则称变量y和x服从一元线性回归模型(或一元线性正态回归模型)



未知参数估计


(1) (α,β)

偏微分最小估计

ni=1(yiαβxi)2=maxα,β(yiαβxi)2

对左边求偏导,得到

α=y¯βx¯
β=ni=1(xix¯)(yiy¯)ni=1(xix¯)2



(2) (α,β)

由于 yiyi ~ N(α+βxi,σ2)
则联合概率密度为
L=Ni=11σ2πexp[12σ2(yiαβxi)2]
=(1σ2π)nexp[12σ2ni=1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值