深度学习
WTHunt
厚积薄发
展开
-
什么是low-level、high-level任务
Low-level任务:常见的包括 Super-Resolution,denoise, deblur, dehze, low-light enhancement, deartifacts等。简单来说,是把特定降质下的图片还原成好看的图像,现在基本上用end-to-end的模型来学习这类ill-posed问题的求解过程,客观指标主要是PSNR,SSIM,大家指标都刷的很高。目前面临以下几点问题:泛化性差,换个数据集,同种任务变现就很差 客观指标与主观感受存在,GAP,指标刷很高,人眼观感不佳,用GAN.原创 2021-05-24 15:49:54 · 7485 阅读 · 0 评论 -
resnet50训练imagenet记录
参考资料:resnet50结构:https://www.jianshu.com/p/993c03c22d52resnet50训练条件:百度paddleimagenet labels:https://raw.githubusercontent.com/soumith/imagenetloader.torch/master/valprep.shResNet50模型的复现详解原创 2021-04-01 21:04:02 · 2336 阅读 · 0 评论 -
SENet(Squeeze-and-Excitation Networks)
https://blog.csdn.net/zhw864680355/article/details/87825993转载 2020-07-30 11:58:09 · 156 阅读 · 0 评论 -
深入理解BN、合并conv+BN公式推导
https://www.cnblogs.com/guoyaohua/p/8724433.html原创 2020-03-20 10:32:27 · 2689 阅读 · 2 评论 -
高效神经网络的设计
高效神经网络的设计原创 2020-03-12 10:46:00 · 290 阅读 · 0 评论 -
InsightFace及其mxnet、tensorflow代码实现
参考文档:https://www.cnblogs.com/darkknightzh/p/8525287.html原创 2020-02-28 10:42:44 · 790 阅读 · 1 评论 -
smooth l1(huber)+binary cross entropy详解(tensorflow+pytorch)
前言上篇讲到yolov2 loss中使用了两个loss分别时wh使用的smoothl1loss以及其他的BCEloss,这里做个扩展介绍,并对比pytorch以及tensorflow的api接口的使用smoothl1(huber loss)转载自知乎高赞回答:https://www.jianshu.com/p/19483787fa24smooth L1 loss能从两个方面限...原创 2019-12-01 10:26:55 · 1046 阅读 · 0 评论 -
优图yolo-v2 loss解析(tensorflow)
前言最近在做yolo检测模型的8bit落地工作,因需求手撸了优图的yolov2的loss,做个记录方便日后查看。本篇只介绍核心的loss部分,其余详细的代码放到github上面去了,详见https://github.com/XhtZz/yolo-v2-lossloss详解def yolo_loss( target, output, ...原创 2019-11-29 17:17:28 · 207 阅读 · 0 评论 -
深度学习中常用的激活函数详解及对比分析(sigmoid)
Sigmoid函数:特性:1.当变量值远离中心轴时,梯度几乎为0,在神经网络的反向传播过程中,链式求导导致经过sigmoid函数之后的梯度很小,权重值更新较慢2.计算机执行指数运算较慢3.sigmoid在压缩数据幅度方面有优势,在深度网络中,在前向传播中,sigmoid可以保证数据幅度在[0,1]内,这样数据幅度稳住了,不会出现数据扩散,不会有太大的失误。4.定义域...原创 2018-11-02 00:02:50 · 5655 阅读 · 0 评论 -
机器学习---评价指标:Accuracy、Precision、Recall、F-Measure
在介绍指标前必须先了解“混淆矩阵”,其各个元素的介绍如下:True Positive(真正,TP):将正类预测为正类数True Negative(真负,TN):将负类预测为负类数False Positive(假正,FP):将负类预测为正类数误报 (Type I error)False Negative(假负,FN):将正类预测为负类数→漏报 (Type II error)...原创 2018-10-31 00:48:21 · 1077 阅读 · 0 评论 -
Tensorflow入门
Tensorflow初探:需要理解的基本问题: 如何将计算流程表示成图? 怎样通过session来执行图计算? 如何将数据表示成tensors? 如何用Variables来保持状态信息? 如何分别使用feeds和fetches来填充数据和抓取任意的结果? 1. TensorFlow 是什么是一个深度学习库,由 Google 开源,可以对定义...原创 2018-09-09 18:05:58 · 211 阅读 · 0 评论