量化
WTHunt
厚积薄发
展开
-
MNN量化—ADMM优化算法
作者:糖心他爸链接:https://zhuanlan.zhihu.com/p/81243626来源:知乎从优化的角度出发(对应MNN中的ADMM求解)从优化的角度出发,又该如何进行建模和求解呢?首先如果我们想从优化角度去解决该问题,我们首先需要先建立目标函数,这里我们定义一个目标:希望编码后的数据(int8)经过反编码后,跟原数据的”距离“尽可能的接近。该描述可以通过如下数学公式进行刻画:广义目标函数进一步的,假设我们这里选定的度量D为L2度量,f和E的选取跟文章一开始时候介绍的一致转载 2020-10-09 11:35:15 · 2812 阅读 · 0 评论 -
如何插入8bit量化节点(tensorflow)
目录tf流图graph基础知识默认图创建显式图创建多个图调用tf伪量化接口插入kernel、层间量化节点tf流图graph基础知识默认图import tensorflow as tfimport numpy as npa = tf.constant(123)print(a.graph)print(tf.get_default_graph())输出...原创 2019-12-08 21:48:48 · 1177 阅读 · 2 评论 -
高效神经网络的设计
高效神经网络的设计原创 2020-03-12 10:46:00 · 290 阅读 · 0 评论 -
神经网络压缩之低比特量化的优劣分析
优势减小模型尺寸(减少内存占用):如8位整型量化可减少75%的模型大小,更小的模型大小意味着不需要更多的内存加快推理速度:1)8 位的访问次数要比 32 位多,在读取 8 位整数时只需要 32 位浮点数的 1/4 的内存带宽,例如,在 32 位内存带宽的情况下,8 位整数可以一次访问 4 个,32 位浮点数只能 1 次访问 1 个。而且使用 SIMD 指令(19.2节会加速介绍该指令集...原创 2020-01-05 22:09:38 · 1946 阅读 · 0 评论 -
tensorflow量化策略详解
第一种,混合量化--仅量化权重该方式将浮点型的权重量化为int8整型,可将模型大小直接减少75%、提升推理速度最大3倍。该方式在推理的过程中,需要将int8量化值反量化为浮点型后再进行计算,如果某些Ops不支持int8整型量化,那么其保存的权重依然是浮点型的,即部分支持int8量化的Ops其权重保存为int8整型且存在quantize和dequantize操作,否则依然是浮点型的,因而称该方式...原创 2020-01-06 01:14:16 · 1251 阅读 · 0 评论 -
浮点量化逼近策略
目录知识直通车动态定点法(Dynamic Fixed Point Approximation)动态定点法代码迷你浮点法(Minifloat Approximation)迷你浮点数量化代码乘法变移位法(Multiplier-free arithmetic)乘法变移位法量化代码知识直通车参考github链接:https://github.com/Ewenwan/M...原创 2019-12-31 15:59:11 · 1781 阅读 · 0 评论