[呱一题] 爷奖国方程(数论)

@[TOC]([呱一题] 爷奖国方程(数论))

原题

2000ms 256MB

Description

众所周知,时间复杂度为O( 1 N \frac{1}{N} N1)的算法是不可能的,但是国奖爷就爱挑战不可能!现在国奖爷想发明一种时间复杂度为O( 1 N + 1 M \frac{1}{N}+\frac{1}{M} N1+M1)的图论算法,并命名为“国奖爷算法”,但是他触碰到了瓶颈。现在,他已经发明了复杂度为O( 1 1 N + 1 M \frac{1}{\frac{1}{N}+\frac{1}{M}} N1+M11)的算法,并命名为“爷奖国算法”,为了让他的研究更近一步,他需要求解一个“爷奖国方程”,即:

1 1 N + 1 M = T ! \frac{1}{\frac{1}{N}+\frac{1}{M}}=T! N1+M11=T!

其中, T ! = ∏ i = 1 T i T!=\prod_{i=1}^T i T!=i=1Ti

由于国奖爷实在是太厉害了,所以你只需要帮国奖爷精确算出这个“爷奖国方程”有多少对正整数解,国奖爷就能通过海量脑细胞精确算出每一组解,你能帮国奖爷挑战不可能吗?注意,(1,2)和(2,1)算两对解。

Input Description

输入一行一个正整数 T T T,含义由题目给出。其中 1 ≤ T ≤ 1 0 7 1\leq T\leq10^7 1T107

Output Description

输出一行一个正整数 a n s w e r answer answer,由于答案可能比较大,你只需要输出 a n s w e r m o d 19260817 answer\enspace mod\enspace 19260817 answermod19260817

Input Sample 1

1

Output Sample 1

1

Input Sample 2

2

Output Sample 2

3

Hint

在样例1中,对于T=1,T!=1,有解(2,2)。

在样例2中,对于T=2,T!=2,有解(3,6),(4,4),(6,3)。

题解

我们不妨设 K = T ! K=T! K=T!,那么有:

1 1 N + 1 M = K ⇔ 1 N + 1 M = 1 K ⇔ ( N + M ) K = N M ⇔ − ( N + M ) K + N M = 0 ⇔ K 2 − ( N + M ) K + N M = K 2 ⇔ ( N − K ) ( M − K ) = K 2 \frac{1}{\frac{1}{N}+\frac{1}{M}}=K\\ \\ \Leftrightarrow \frac{1}{N}+\frac{1}{M}=\frac{1}{K}\\ \\ \Leftrightarrow (N+M)K=NM\\ \\ \Leftrightarrow -(N+M)K+NM=0\\ \\ \Leftrightarrow K^2-(N+M)K+NM=K^2\\ \\ \Leftrightarrow (N-K)(M-K)=K^2\\ N1+M11=KN1+M1=K1(N+M)K=NM(N+M)K+NM=0K2(N+M)K+NM=K2(NK)(MK)=K2

显然, ( N − K ) , ( M − K ) (N-K),(M-K) (NK),(MK) K 2 K^2 K2的两个因子,所以答案即为 K 2 K^2 K2的因子个数,即 ( T ! ) 2 {(T!)}^2 (T!)2的因子个数。

我们对 T ! T! T!做质因子分解,有:

T ! = p 1 k 1 ⋅ p 2 k 2 ⋯ p n k n ( T ! ) 2 = p 1 2 k 1 ⋅ p 2 2 k 2 ⋯ p n 2 k n T!=p_1^{k_1} \cdot p_2^{k_2} \cdots p_n^{k_n}\\ (T!)^2=p_1^{2k_1} \cdot p_2^{2k_2} \cdots p_n^{2k_n}\\ T!=p1k1p2k2pnkn(T!)2=p12k1p22k2pn2kn

那么 ( T ! ) 2 (T!)^2 (T!)2的因子个数为:

a n s w e r = ( 2 k 1 + 1 ) ⋅ ( 2 k 1 + 1 ) ⋯ ( 2 k n + 1 ) answer=(2k_1+1) \cdot (2k_1+1) \cdots (2k_n+1)\\ answer=(2k1+1)(2k1+1)(2kn+1)

现在我们考虑如何对 T ! T! T!做质因子分解,对于一个质数 X X X,在 [ 1 , T ] [1,T] [1,T]中,有 ⌊ T X ⌋ \lfloor \frac{T}{X} \rfloor XT个数含有至少1个这个质因子,有 ⌊ T X 2 ⌋ \lfloor \frac{T}{X^2} \rfloor X2T个数含有至少2个这个质因子……

所以我们只需要先筛出T以内的质数,再对每个质数做上述处理计算T!中含有多少个这个质因子即可。

代码实现

首先,我们要筛出所有的质数,这里用线性筛法。

const int N=1e7+1;
const int M=19260817;

vector<int> prime;
bool notPrime[N];

void filte()
{
    for(int i=2;i<N;i++)
    {
        if(!notPrime[i])
        {
            //cout<<i<<endl;
            prime.push_back(i);
            for(long long j=1ll*i*i;j<N;j+=i)
            {
                notPrime[j]=true;
            }
        }
    }
}

然后,我们对每个质数计算 T ! T! T!包含多少个因子。

long long LTZ_euqition(long long T)
{
    long long answer=1;
    int cnt=0;
    for(int X:prime)
    {
        if(X>T)break;
        long long x=X;
        while(x<=T)
        {
            cnt+=T/x;
            x*=X;
        }
        answer*=(2*cnt+1);
        answer%=M;
        cnt=0;
    }
    return answer;
}

下附完整实现

// by Concyclics
//
//
#include <iostream>
#include <vector>
using namespace std;

const int N=1e7+1;
const int M=19260817;

vector<int> prime;
bool notPrime[N];

void filte()
{
    for(int i=2;i<N;i++)
    {
        if(!notPrime[i])
        {
            //cout<<i<<endl;
            prime.push_back(i);
            for(long long j=1ll*i*i;j<N;j+=i)
            {
                notPrime[j]=true;
            }
        }
    }
}

long long LTZ_euqition(long long T)
{
    long long answer=1;
    int cnt=0;
    for(int X:prime)
    {
        if(X>T)break;
        long long x=X;
        while(x<=T)
        {
            cnt+=T/x;
            x*=X;
        }
        
        answer*=(2*cnt+1);
        answer%=M;
        cnt=0;
    }
    return answer;
}

int main()
{
    
    filte();
    int T;
    cin>>T;
    cout<<LTZ_euqition(T);
}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

concyclics

可怜可怜孩子吧

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值