@[TOC]([呱一题] 爷奖国方程(数论))
原题
2000ms 256MB
Description
众所周知,时间复杂度为O(1N\frac{1}{N}N1)的算法是不可能的,但是国奖爷就爱挑战不可能!现在国奖爷想发明一种时间复杂度为O(1N+1M\frac{1}{N}+\frac{1}{M}N1+M1)的图论算法,并命名为“国奖爷算法”,但是他触碰到了瓶颈。现在,他已经发明了复杂度为O(11N+1M\frac{1}{\frac{1}{N}+\frac{1}{M}}N1+M11)的算法,并命名为“爷奖国算法”,为了让他的研究更近一步,他需要求解一个“爷奖国方程”,即:
11N+1M=T! \frac{1}{\frac{1}{N}+\frac{1}{M}}=T! N1+M11=T!
其中,T!=∏i=1TiT!=\prod_{i=1}^T iT!=∏i=1Ti
由于国奖爷实在是太厉害了,所以你只需要帮国奖爷精确算出这个“爷奖国方程”有多少对正整数解,国奖爷就能通过海量脑细胞精确算出每一组解,你能帮国奖爷挑战不可能吗?注意,(1,2)和(2,1)算两对解。
Input Description
输入一行一个正整数TTT,含义由题目给出。其中1≤T≤1071\leq T\leq10^71≤T≤107
Output Description
输出一行一个正整数answeransweranswer,由于答案可能比较大,你只需要输出answermod19260817answer\enspace mod\enspace 19260817answermod19260817。
Input Sample 1
1
Output Sample 1
1
Input Sample 2
2
Output Sample 2
3
Hint
在样例1中,对于T=1,T!=1,有解(2,2)。
在样例2中,对于T=2,T!=2,有解(3,6),(4,4),(6,3)。
题解
我们不妨设K=T!K=T!K=T!,那么有:
11N+1M=K⇔1N+1M=1K⇔(N+M)K=NM⇔−(N+M)K+NM=0⇔K2−(N+M)K+NM=K2⇔(N−K)(M−K)=K2 \frac{1}{\frac{1}{N}+\frac{1}{M}}=K\\ \\ \Leftrightarrow \frac{1}{N}+\frac{1}{M}=\frac{1}{K}\\ \\ \Leftrightarrow (N+M)K=NM\\ \\ \Leftrightarrow -(N+M)K+NM=0\\ \\ \Leftrightarrow K^2-(N+M)K+NM=K^2\\ \\ \Leftrightarrow (N-K)(M-K)=K^2\\ N1+M11=K⇔N1+M1=K1⇔(N+M)K=NM⇔−(N+M)K+NM=0⇔K2−(N+M)K+NM=K2⇔(N−K)(M−K)=K2
显然,(N−K),(M−K)(N-K),(M-K)(N−K),(M−K)为K2K^2K2的两个因子,所以答案即为K2K^2K2的因子个数,即(T!)2{(T!)}^2(T!)2的因子个数。
我们对T!T!T!做质因子分解,有:
T!=p1k1⋅p2k2⋯pnkn(T!)2=p12k1⋅p22k2⋯pn2kn T!=p_1^{k_1} \cdot p_2^{k_2} \cdots p_n^{k_n}\\ (T!)^2=p_1^{2k_1} \cdot p_2^{2k_2} \cdots p_n^{2k_n}\\ T!=p1k1⋅p2k2⋯pnkn(T!)2=p12k1⋅p22k2⋯pn2kn
那么(T!)2(T!)^2(T!)2的因子个数为:
answer=(2k1+1)⋅(2k1+1)⋯(2kn+1) answer=(2k_1+1) \cdot (2k_1+1) \cdots (2k_n+1)\\ answer=(2k1+1)⋅(2k1+1)⋯(2kn+1)
现在我们考虑如何对T!T!T!做质因子分解,对于一个质数XXX,在[1,T][1,T][1,T]中,有⌊TX⌋\lfloor \frac{T}{X} \rfloor⌊XT⌋个数含有至少1个这个质因子,有⌊TX2⌋\lfloor \frac{T}{X^2} \rfloor⌊X2T⌋个数含有至少2个这个质因子……
所以我们只需要先筛出T以内的质数,再对每个质数做上述处理计算T!中含有多少个这个质因子即可。
代码实现
首先,我们要筛出所有的质数,这里用线性筛法。
const int N=1e7+1;
const int M=19260817;
vector<int> prime;
bool notPrime[N];
void filte()
{
for(int i=2;i<N;i++)
{
if(!notPrime[i])
{
//cout<<i<<endl;
prime.push_back(i);
for(long long j=1ll*i*i;j<N;j+=i)
{
notPrime[j]=true;
}
}
}
}
然后,我们对每个质数计算T!T!T!包含多少个因子。
long long LTZ_euqition(long long T)
{
long long answer=1;
int cnt=0;
for(int X:prime)
{
if(X>T)break;
long long x=X;
while(x<=T)
{
cnt+=T/x;
x*=X;
}
answer*=(2*cnt+1);
answer%=M;
cnt=0;
}
return answer;
}
下附完整实现
// by Concyclics
//
//
#include <iostream>
#include <vector>
using namespace std;
const int N=1e7+1;
const int M=19260817;
vector<int> prime;
bool notPrime[N];
void filte()
{
for(int i=2;i<N;i++)
{
if(!notPrime[i])
{
//cout<<i<<endl;
prime.push_back(i);
for(long long j=1ll*i*i;j<N;j+=i)
{
notPrime[j]=true;
}
}
}
}
long long LTZ_euqition(long long T)
{
long long answer=1;
int cnt=0;
for(int X:prime)
{
if(X>T)break;
long long x=X;
while(x<=T)
{
cnt+=T/x;
x*=X;
}
answer*=(2*cnt+1);
answer%=M;
cnt=0;
}
return answer;
}
int main()
{
filte();
int T;
cin>>T;
cout<<LTZ_euqition(T);
}

博客介绍了如何通过数学分析和编程技术解决‘爷奖国方程’,即寻找使得1/(1/N + 1/M) = T!成立的正整数对(N,M)。通过质因子分解和线性筛法,计算给定T值时方程的解的数量,最后给出了完整的C++代码实现。
959

被折叠的 条评论
为什么被折叠?



