循环神经网络--LSTM(长短时记忆网络)

循环神经网路

基本的循环神经网络

下图是一个简单的循环神经网络,它由输入层、隐藏层和一个输出层组成。
这里写图片描述
其中,x 是输入层的值,U是输入层到隐藏层的权重,s是隐藏层的输出的值,V是隐藏层到输出层的权重,o是输出,环神经网络的隐藏层的值s不仅仅取决于当前这次的输入x,还取决于上一次隐藏层的值s。权重矩阵 W就是隐藏层上一次的值作为这一次的输入的权重。

如果将上图展开,就如下图所示:
这里写图片描述
现在看上去就比较清楚了,这个网络在t时刻接收到输入 Xt 之后,隐藏层的值是St,输出值是Ot。关键一点是,St的值不仅仅取决于Xt,还取决于St-1。我们可以用下面的公式来表示循环神经网络的计算方法:
这里写图片描述
式1是输出层的计算公式,输出层是一个全连接层,也就是它的每个节点都和隐藏层的每个节点相连。V是输出层的权重矩阵,g是激活函数。式2是隐藏层的计算公式,它是循环层。U是输入x的权重矩阵,W是上一次的值St-1作为这一次的输入的权重矩阵,f是激活函数。

从上面的公式我们可以看出,循环层和全连接层的区别就是循环层多了一个权重矩阵 W。

如果反复把式2带入到式1,我们将得到:
这里写图片描述
从上面可以看出,循环神经网络的输出值Ot,是受前面历次输入值St、St-1、St-2、St-3、St-4…影响的,这就是为什么循环神经网络可以往前看任意多个输入值的原因。

双向循环神经网络

对于语言模型来说,很多时候光看前面的词是不够的,比如下面这句话:

我的手机坏了,我打算  ________一 部新手机。

可以想象,如果我们只看横线前面的词,手机坏了,那么我是打算修一修?换一部新的?还是大哭一场?这些都是无法确定的。但如果我们也看到了横线后面的词是『一部新手机』,那么,横线上的词填『买』的概率就大得多了。

在上一小节中的基本循环神经网络是无法对此进行建模的,因此,我们需要双向循环神经网络,如下图所示:
这里写图片描述

当遇到这种从未来穿越回来的场景时,难免处于懵逼的状态。不过我们还是可以用屡试不爽的老办法:先分析一个特殊场景,然后再总结一般规律。我们先考虑上图中,Y2的计算。
这里写图片描述
从上面三个公式我们可以看到,正向计算和反向计算不共享权重,也就是说U和U’、W和W’、V和V’都是不同的权重矩阵。

RNN的梯度爆炸和消失问题

不幸的是,实践中前面介绍的几种RNNs并不能很好的处理较长的序列。一个主要的原因是,RNN在训练中很容易发生梯度爆炸和梯度消失,这导致训练时梯度不能在较长序列中一直传递下去,从而使RNN无法捕捉到长距离的影响。

为什么RNN会产生梯度爆炸和消失问题呢?我们接下来将详细分析一下原因。我们根据式3可得:
这里写图片描述
上式中的B定义为矩阵的模的上界。因为上式是一个指数函数,如果t-k很大,会导致对应的误差项的值增长或者缩小非常快,这样就会导致相应的梯度爆炸或者梯度消失问题(取决于B大于1还是小于1)。

解决办法:

通常来说,梯度爆炸更容易处理一些。因为梯度爆炸的时候,程序会收到NaN错误。我们也可以设置一个梯度阈值,当梯度超过这个阈值的时候可以直接截取。

梯度消失更难检测,而且也更难处理一些。总的来说,我们有三种方法应对梯度消失问题:
合理的初始化权重值。初始化权重,使每个神经元尽可能不要取极大或极小值,以躲开梯度消失的区域。
使用relu代替sigmoid和tanh作为激活函数。原理请参考上一篇文章零基础入门深度学习(4) - 卷积神经网络的激活函数一节。
使用其他结构的RNNs,比如长短时记忆网络(LTSM)和Gated Recurrent Unit(GRU),这是最流行的做法。我们将在以后的文章中介绍这两种网络。

RNN的应用举例——基于RNN的语言模型

现在,我们介绍一下基于RNN语言模型。我们首先把词依次输入到循环神经网络中,每输入一个词,循环神经网络就输出截止到目前为止,下一个最可能的词。例如,当我们依次输入:

    我 昨天 上学 迟到 了

神经网络的输出如下图所示:
这里写图片描述
其中,s和e是两个特殊的词,分别表示一个序列的开始和结束。

向量化

我们知道,神经网络的输入和输出都是向量,为了让语言模型能够被神经网络处理,我们必须把词表达为向量的形式,这样神经网络才能处理它。

神经网络的输入是词,我们可以用下面的步骤对输入进行向量化:

  1. 建立一个包含所有词的词典,每个词在词典里面有一个唯一的编号。
  2. 任意一个词都可以用一个N维的one-hot向量来表示。其中,N是词典中包含的词的个数。假设一个词在词典中的编号是i,v是表示这个词的向量,Vj是向量的第j个元素,则:
    上面这个公式的含义,可以用下面的图来直观的表示:
    这里写图片描述

使用这种向量化方法,我们就得到了一个高维、稀疏的向量(稀疏是指绝大部分元素的值都是0)。处理这样的向量会导致我们的神经网络有很多的参数,带来庞大的计算量。因此,往往会需要使用一些降维方法,将高维的稀疏向量转变为低维的稠密向量。不过这个话题我们就不再这篇文章中讨论了。

语言模型要求的输出是下一个最可能的词,我们可以让循环神经网络计算计算词典中每个词是下一个词的概率,这样,概率最大的词就是下一个最可能的词。因此,神经网络的输出向量也是一个N维向量,向量中的每个元素对应着词典中相应的词是下一个词的概率。如下图所示
这里写图片描述

Softmax层

前面提到,语言模型是对下一个词出现的概率进行建模。那么,怎样让神经网络输出概率呢?方法就是用softmax层作为神经网络的输出层。

这个公式看起来可能很晕,我们举一个例子。Softmax层如下图所示:
这里写图片描述

从上图我们可以看到,softmax layer的输入是一个向量,输出也是一个向量,两个向量的维度是一样的(在这个例子里面是4)。输入向量x=[1 2 3 4]经过softmax层之后,经过上面的softmax函数计算,转变为输出向量y=[0.03 0.09 0.24 0.64]。
我们来看看输出向量y的特征:

  1. 每一项为取值为0-1之间的正数;
  2. 所有项的总和是1。

我们不难发现,这些特征和概率的特征是一样的,因此我们可以把它们看做是概率。对于语言模型来说,我们可以认为模型预测下一个词是词典中第一个词的概率是0.03,是词典中第二个词的概率是0.09,以此类推。

语言模型的训练

可以使用监督学习的方法对语言模型进行训练,首先,需要准备训练数据集。接下来,我们介绍怎样把语料

我 昨天 上学 迟到 了

转换成语言模型的训练数据集。

首先,我们获取输入-标签对:
这里写图片描述
然后,使用前面介绍过的向量化方法,对输入x和标签y进行向量化。这里面有意思的是,对标签y进行向量化,其结果也是一个one-hot向量。例如,我们对标签『我』进行向量化,得到的向量中,只有第2019个元素的值是1,其他位置的元素的值都是0。它的含义就是下一个词是『我』的概率是1,是其它词的概率都是0。

最后,我们使用交叉熵误差函数作为优化目标,对模型进行优化。

在实际工程中,我们可以使用大量的语料来对模型进行训练,获取训练数据和训练的方法都是相同的。

交叉熵误差

一般来说,当神经网络的输出层是softmax层时,对应的误差函数E通常选择交叉熵误差函数,其定义如下:
这里写图片描述

我们当然可以选择其他函数作为我们的误差函数,比如最小平方误差函数(MSE)。不过对概率进行建模时,选择交叉熵误差函数更make sense。
完整代码请参考GitHub:

https://github.com/hanbt/learn_dl/blob/master/rnn.py (python2.7)

LSTM(长短时记忆网络)

理解LSTMs的关键就是下面的矩形方框,被称为memory block(记忆块),主要包含了三个门(forget gate、input gate、output gate)与一个记忆单元(cell)。方框内上方的那条水平线,被称为cell state(单元状态),它就像一个传送带,可以控制信息传递给下一时刻。
这里写图片描述

这个矩形方框还可以表示为:
这里写图片描述

这两个图可以对应起来看,下图中心的ct即cell,从下方输入(ht−1,xt)到输出ht的一条线即为cell state,ft,it,ot分别为遗忘门、输入门、输出门,用sigmoid层表示。上图中的两个tanh层则分别对应cell的输入与输出。

逐步解析LSTM

第一步:LSTM第一步是用来决定什么信息可以通过cell state。这个决定由“forget gate”层通过sigmoid来控制,它会根据上一时刻的输出ht−1和当前输入Xt来产生一个0到1 的ft值,来决定是否让上一时刻学到的信息Ct−1通过或部分通过。如下:
这里写图片描述

举个例子来说就是,我们在之前的句子中学到了很多东西,一些东西对当前来讲是没用的,可以对它进行选择性地过滤。

第二步:产生我们需要更新的新信息。这一步包含两部分,第一个是一个“input gate”层通过sigmoid来决定哪些值用来更新,第二个是一个tanh层用来生成新的候选值C~t,它作为当前层产生的候选值可能会添加到cell state中。我们会把这两部分产生的值结合来进行更新。
这里写图片描述

现在我们对老的cell state进行更新,首先,我们将老的cell state乘以ft来忘掉我们不需要的信息,然后再与it∗C~t相加,得到了候选值。
一二步结合起来就是丢掉不需要的信息,添加新信息的过程:
这里写图片描述
举个例子就是,在前面的句子中我们保存的是张三的信息,现在有了新的李四信息,我们需要把张三的信息丢弃掉,然后把李四的信息保存下来。

最后一步:决定模型的输出,首先是通过sigmoid层来得到一个初始输出,然后使用tanh将 Ct值缩放到-1到1间,再与sigmoid得到的输出逐对相乘,从而得到模型的输出。
这里写图片描述

总结:

这显然可以理解,首先sigmoid函数的输出是不考虑先前时刻学到的信息的输出,tanh函数是对先前学到信息的压缩处理,起到稳定数值的作用,两者的结合学习就是递归神经网络的学习思想。至于模型是如何学习的,那就是后向传播误差学习权重的一个过程了。

上面是对LSTM一个典型结构的理解,当然,它也会有一些结构上的变形,但思想基本不变,这里也就不多讲了。
参考:
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://zybuluo.com/hanbingtao/note/541458

  • 1
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值