基于ConvLSTM的伦敦空气质量预测(2) 算法实施

该博客介绍了基于ConvLSTM的伦敦空气质量预测实验,利用多个监测站数据预测Bloomsbury的空气污染物,对比了普通LSTM、BiLSTM等模型,并提供了数据处理和模型评估的详细步骤。在1小时和96小时预测能力评估中展示了模型性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

介绍 伦敦范围的五个空气质量监测站

该实验使用了ConvLSTM模型,对伦敦地区的空气质量进行了时序预测。数据集来源于开源库openair。实验的目标是预测Bloomsbury的空气污染物数值。同时,也利用了Harlington, North Kensington, Marylebone 和Eltham这四个空气质量监测站的数据作为辅助预测。数据的属性有8个,分别为:NOX, NO2, NO, O3, PM2.5, 风速,风向和空气温度。

除了使用ConvLSTM, 该实验还使用了普通LSTM, BiLSTM, Attention+LSTM, LightGBM 和ARIMA进行预测。具体内容可以在github上进行查看:air_pollutants_prediction_lstm

算法实施

导入数据

假定Marylebone Road监测站的数据出现异常,此时我们用Bloomsbury, Eltham, Harlington和N_Kensington的数据来推断Marylebone的数据。该实验是多变量预测单变量。分多次预测,实现多变量预测多变量。

#读取数据,数据已经清洗过了。
Marylebone_Road=pd.read_csv('/content/drive/My Drive/air_inference/data/Marylebone_Road_clean.csv')
Bloomsbury=pd.read_csv('/content/drive/My Drive/air_inference/data/Bloomsbury_clean.csv')
Eltham=pd.read_csv('/content/drive/My Drive/air_inference/data/Eltham_clean.csv')
Harlington=pd.read_csv('/content/drive/My Drive/air_inference/data/Harlington_clean.csv')
N_Kensington=pd.read_csv('/content/drive/My Drive/air_inference/data/N_Kensington_clean.csv')

只选取我们想要的数据属性,NOX, NO2, NO, O3, PM2.5, 风速,风向和空气温度。

Marylebone_Road=Marylebone_Road[['nox','no2','no','o3','pm2.5','ws','wd','air_temp']]
Bloomsbury=Bloomsbury[['nox','no2','no','o3','pm2.5','ws','wd','air_temp']]
Eltham=Eltham[['nox','no2','no','o3','pm2.5','ws','wd','air_temp']]
Harlington=Harlington[[
评论 19
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值