2023年美赛数学建模题目分析,备战2024美赛数学建模(历年美赛论文获取)

目录

2023年题目分析2024年美赛数学建模思路模型:开赛后第一时间更新,获取见文末名片赛题:MCM A(环境类)题目:遭受旱灾的植物群落

赛题:MCM B(环境类、政策类)题目:重新想象马赛马拉

赛题:MCM C(数图,图论优化类知识)题目:预测单词结果

赛题:ICM D题目:联合国可持续发展目标的优先顺序

赛题:ICM E(环境类)题目:光污染

赛题:ICM F题目:绿色GDP

2024美赛数学建模思路获取,历年获奖论文获取


2023年题目分析
2024年美赛数学建模思路模型:开赛后第一时间更新,获取见文末名片
赛题:MCM A(环境类)
题目:遭受旱灾的植物群落

题目简述:需要建立预测模型,预测植物群落未来随时间的变化。干旱季节如何随时间变化,降水充裕时区如何随时间变化。单纯的时序模型无法描述植物群落,植物群落是概念,需要定量化,植物群落的数量和种类,生物性都需要考虑,不同植物类型随时间推移会发生怎样的变化。

问题类型:评价及预测类

赛题:MCM B(环境类、政策类)
题目:重新想象马赛马拉

题目简述:B题难度主要在数据不好找,预测动物和人们相互作用的模型。找数据很难的绝招,用“地图思想”,打开谷歌地球,搜索相关地区,下载地图,将房屋,保护区位置,人类生活位置,水资源保护,道路规划,产业规划等作为问题角度,以地区规划来分析。对原有地区进行规划,把政策类问题归为一个图论的规划问题。可以参考美赛无人机空投问题。

问题类型:规划类

赛题:MCM C(数图,图论优化类知识)
题目:预测单词结果

题目简述:猜字谜游戏,数独游戏。可以采用神经网络模型,利用隶属度函数进行分类,用聚类模型转换为不同的类,再用神经网络作为输出,但容易陷入过拟合现象,不建议用BP神经网络模型,建议使用复杂一点的模型,例如基于遗传算法的神经网络模型。

赛题:ICM D
题目:联合国可持续发展目标的优先顺序

题目简述:本题关键在数据层面,题目要求17项指标不是相互独立的,意味着不能用单纯的合成法。构建各个指标之间的关系网络,各个指标之间存在限制。关键在于一个指标和另一个指标之间的关系如何构建,一个指标和多个指标之间的关系如何构建。利用斜方差矩阵思路,构建17个指标间的联系,另外典型相关分析也可以分析各个项目间的关系。

赛题:ICM E(环境类)
题目:光污染

题目简述:难度系数主要还是在获取光污染的数据上。第一步构建评价的指标体系,建立评价模型,第二步对于不同地区分析,第三步,针对评价结果提出干预策略,讨论策略有效性。

题目类型:评价类问题

赛题:ICM F
题目:绿色GDP

题目简述:择某个标准来计算绿色GDP,基于水资源安全的模型来构建它对全球气候变化的影响,可以构建回归模型,用全球平均温度或海平面高度作为应变量,模型为自变量,来判断未来是否会造成气温下降。可以构建逻辑回归,线性或非线性,多指标回归模型,可以选择模型难易度,需要有预测的思想在里面。
 

2024美赛数学建模思路获取,历年获奖论文获取

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值