提升(boosting)方法是一种常用的统计学习方法,应用广泛且有效。
在分类问题中,它通过改变训练样本的权重,学习多个分类器,并将这些分类器进行线性组合,提高分类的性能。
1. 提升方法AdaBoost算法
- 思路:多个算法的判断结果综合
- 弱学习方法容易获得,通过组合一系列弱学习方法,提升出来强学习方法
- 大多数提升方法:改变训练数据的概率分布(权值分布)
- 如何改变权值或概率分布:AdaBoost 的做法是,提高被前一轮弱分类器错误分类样本的权值,没有得到正确分类的数据,由于其权值的加大而受到后一轮的弱分类器的更大关注
- 如何将弱分类器组合:AdaBoost 采取加权多数表决的方法。
加大分类误差率小的弱分类器的权值,使其在表决中起较大的作用;减小分类误差率大的弱分类器的权值,使其在表决中起较小的作用。
AdaBoost 模型是弱分类器的线性组合:
f ( x ) = ∑ m = 1 M α m G m ( x ) f(x)=\sum_{m=1}^{M} \alpha_{m} G_{m}(x) f(x)=m=1∑MαmGm(x)
- AdaBoost 算法每次迭代中,提高前一轮分类器错误分类数据的权值,降低被正确分类的数据的权值。
- AdaBoost 将基本分类器的线性组合作为强分类器,给分类误差率小的基本分类器大的权值,给分类误差率大的基本分类器小的权值。
算法步骤:
1)给每个训练样本( x 1 , x 2 , … . , x N x_{1},x_{2},….,x_{N} x1,x2,….,xN)分配权重,初始权重 w 1 i w_{1i} w1i 均为 1 N \frac{1}{N} N1。
2)针对带有权值的样本进行训练,得到基本分类器 G m G_m Gm(初始模型为 G 1 G1 G1)。
3)计算模型 G m G_m Gm 的误分率 e m = ∑ i = 1 N w m i I ( y i ≠ G m ( x i ) ) e_m=\sum\limits_{i=1}^N w_{mi} I(y_i\not= G_m(x_i)) em=i=1∑NwmiI(yi=Gm(xi))
4)计算模型 G m G_m Gm 的系数 α m = 1 2 ln 1 − e m e m \alpha_m=\frac{1}{2} \ln \frac{1-e_m}{e_m} αm=21lnem1−em
5)根据误分率
e
e
e 和当前权重向量
w
m
w_m
wm 更新权重向量
w
m
+
1
w_{m+1}
wm+1
w
m
+
1
,
i
=
w
m
,
i
Z
m
exp
(
−
α
m
y
i
G
m
(
x
i
)
)
w_{m+1,i} = \frac{w_{m,i}}{Z_m} \exp (-\alpha_my_iG_m(x_i))
wm+1,i=Zmwm,iexp(−αmyiGm(xi))
Z
m
Z_m
Zm 是规范化因子,
Z
m
=
∑
i
=
1
M
w
m
,
i
exp
(
−
α
m
y
i
G
m
(
x
i
)
)
Z_m = \sum\limits_{i=1}^M w_{m,i} \exp (-\alpha_my_iG_m(x_i))
Zm=i=1∑Mwm,iexp(−αmyiGm(xi))
6)计算组合模型 f ( x ) = ∑ m = 1 M α m G m ( x i ) f(x)=\sum\limits_{m=1}^M \alpha_mG_m(x_i) f(x)=m=1∑MαmGm(xi) 的误分率。
7)当组合模型的误分率或迭代次数低于一定阈值,停止迭代;否则,回到步骤 2)
2. AdaBoost算法训练误差分析
书上有定理证明,AdaBoost 算法能在学习的过程中,不断减少训练误差。
AdaBoost 具有适应性,即它能适应弱分类器各自的训练误差率。这也是它的名称(适应的提升)的由来,Ada是Adaptive的简写。
3. AdaBoost算法的解释
AdaBoost 算法的一个解释是该算法实际是前向分步算法的一个实现。
在这个方法里,模型是加法模型,损失函数是指数损失,算法是前向分步算法。
每一步中极小化损失函数
( β m , γ m ) = arg min β , γ ∑ i = 1 N L ( y i , f m − 1 ( x i ) + β b ( x i ; γ ) ) \left(\beta_{m}, \gamma_{m}\right)=\arg \min _{\beta, \gamma} \sum_{i=1}^{N} L\left(y_{i}, f_{m-1}\left(x_{i}\right)+\beta b\left(x_{i} ; \gamma\right)\right) (βm,γm)=argβ,γmini=1∑NL(yi,fm−1(xi)+βb(xi;γ))
得到参数 β m , γ m \beta_{m}, \gamma_{m} βm,γm。
4. 提升树
提升树是以分类树或回归树为基本分类器的提升方法。提升树被认为是统计学习中最有效的方法之一。
提升方法实际采用加法模型(即基函数的线性组合)与前向分步算法。
以决策树为基函数的提升方法称为提升树(boosting tree)。
5. sklearn 实例
sklearn.ensemble.AdaBoostClassifier
class sklearn.ensemble.AdaBoostClassifier(base_estimator=None,
n_estimators=50, learning_rate=1.0, algorithm='SAMME.R',
random_state=None)
-
algorithm:这个参数只有AdaBoostClassifier有。有两种Adaboost分类算法,SAMME和SAMME.R。
主要区别是弱学习器权重的度量,SAMME使用分类效果作为弱学习器权重,而SAMME.R使用预测概率大小来作为弱学习器权重。
由于SAMME.R使用了概率度量的连续值,迭代一般比SAMME快,因此AdaBoostClassifier的默认算法algorithm的值也是SAMME.R。
注意使用了SAMME.R, 则弱分类学习器参数base_estimator必须限制使用支持概率预测的分类器。SAMME算法则没有这个限制。 -
n_estimators: AdaBoostClassifier和AdaBoostRegressor都有,是弱学习器的最大迭代次数,或者说最大的弱学习器的个数。一般来说n_estimators太小,容易欠拟合,n_estimators太大,又容易过拟合,一般选择一个适中的数值。默认是50。
-
learning_rate: AdaBoostClassifier和AdaBoostRegressor都有,即每个弱学习器的权重缩减系数ν
-
base_estimator:AdaBoostClassifier和AdaBoostRegressor都有,即弱分类学习器或者弱回归学习器。常用的是CART决策树或者神经网络MLP。
参考:https://github.com/fengdu78/lihang-code
# -*- coding:utf-8 -*-
# @Python Version: 3.7
# @Time: 2020/3/24 23:13
# @Author: Michael Ming
# @Website: https://michael.blog.csdn.net/
# @File: AdaBoost.py
# @Reference: https://github.com/fengdu78/lihang-code
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.ensemble import AdaBoostClassifier
from sklearn.datasets import load_iris
data = [[0, 1, 3, -1],
[0, 3, 1, -1],
[1, 2, 2, -1],
[1, 1, 3, -1],
[1, 2, 3, -1],
[0, 1, 2, -1],
[1, 1, 2, 1],
[1, 1, 1, 1],
[1, 3, 1, -1],
[0, 2, 1, -1]]
data = pd.DataFrame(np.array(data))
X, y = data.iloc[:, 0:-1], data.iloc[:, -1]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)
clf = AdaBoostClassifier(n_estimators=50, learning_rate=0.5)
clf.fit(X_train, y_train)
print(clf.score(X_test, y_test))