yolo 模型下载大全

### 下载 YOLO 模型 对于希望获取YOLO模型的用户而言,有多种方法来下载这些模型。如果目标是从Ultralytics库中下载YOLOv8模型,则可以通过Python包管理器pip安装`ultralytics`库并利用内置函数加载预训练模型[^1]。 ```bash pip install ultralytics ``` 接着,在Python脚本或交互环境中执行如下命令: ```python from ultralytics import YOLO model = YOLO("yolov8n-cls.pt") # 加载分类预训练模型 ``` 上述代码片段展示了如何通过指定`.pt`文件名的方式加载由Ultralytics提供的预训练YOLOv8模型。此方式适用于那些想要快速上手而无需自行训练模型的研究者和开发者们。 另外一种情况是当用户已经拥有特定版本的YOLO框架副本(如YOLOv5),并且该副本位于本地计算机上的某个目录下时,可以直接从这个位置加载自定义训练好的权重文件[^3]。例如,假设YOLOv5项目被克隆到了`C:/Users/Qingchen/yolov5`路径下,并且有一个名为`best_0523.pt`的模型权重文件存在于同一目录内,那么可以按照下面的方法加载它: ```python import torch model = torch.hub.load( 'C:/Users/Qingchen/yolov5', 'custom', path_or_model='C:/Users/Qingchen/yolov5/best_0523.pt', source='local' ) ``` 这段代码说明了怎样基于本地存储的YOLOv5仓库以及对应的权重文件创建一个可使用的检测模型实例。这种方式特别适合于那些已经在自己的数据集上进行了微调或者重新训练过YOLO模型的情况。 至于更先进的变体,比如提到过的GOLD-YOLO改进版YOLOv7,虽然官方文档可能不会像YOLOv8那样提供直接简便的一键式解决方案,但是通常也会给出详细的指导说明如何编译源码、配置环境变量以及下载必要的依赖项和预训练参数文件[^2]。不过需要注意的是,这类高级定制化操作往往需要一定的编程基础和技术支持资源作为保障。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值