python 实现K近邻算法并进行可视化 调用sklearn的knn算法进行结果对比

本文介绍了K近邻算法的基本思想,并详细阐述了KNN算法的实现步骤。通过编写代码展示了如何利用Python实现KNN算法,同时与sklearn库中的KNN算法进行了结果对比。文章最后提供了可视化结果,以帮助理解分类过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

  • K近邻算法 思想:不知其人视其友

  • K近邻算法(knn)实现步骤:
  1.     计算当前点与已知类别数据集中的点的距离
  2.     距离递增排序,选出距离最小的k个点
  3.     确定前k个点类别出现的频率
  4.     将频率最高的类别作为当前点的预测分类

  • 完整代码实现
#!/usr/bin/python
# -*- coding: utf-8 -*-
# @author: T


# 导入数据集
from sklearn.datasets import make_blobs
# 导入sklearn knn算法
from sklearn.neighbors import KNeighborsClassifier
# 导入数值计算库
import numpy as np 
# 导入画图库
import matplotlib.pyplot as plt
# 指定默认字体 解决画图中文乱码
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['font.family'] = 'sans-serif'
plt.rcParams['axes.unicode_minus'] = False

'''
K近邻算法 思想:不知其人视其友
'''
'''
K近邻算法(knn)实现步骤:
	1.计算当前点与已知类别数据集中的点的距离
	2.距离递增排序,选出距离最小的k个点
	3.确定前k个点类别出现的频率
	4.将频率最高的类别最为当前点的预测分类
'''

def knn(inX, dataSet
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值