每日一题 4月3日 Shortest Path 树上贪心

题目链接:https://ac.nowcoder.com/acm/problem/13886
在这里插入图片描述
题意:有一棵树,有n个节点。让你分成n/2对。所有对之间的距离和最小。
思路:我们尽量让每条边不重复经过。那么对于一棵子树v。和他的父亲节点u。还有之间的边权w。如果siz[u]%2== 1那么v就和u连。ans+=w。如果siz[u]%2== 0那么v和自己的子树连过了。不加w的贡献。

#include <bits/stdc++.h>
using namespace std;
#define LL long long
 
vector<vector<pair<int , LL> > > v(10005);
LL ans=0;
 
int DFS(int u, int fa, int w){
    int cut=1;
    for(auto x: v[u]){
        if(x.first!=fa){
            cut+=DFS(x.first, u, x.second);
        }
    }
    if(cut%2){
        ans+=w;
    }
    return cut;
}
int main(){
 
    int t; scanf("%d", &t);
    while(t--){
        int n, x, y, z; scanf("%d",&n);
        for(int i=1; i<n; i++){
            scanf("%d%d%d", &x, &y, &z);
            v[x].push_back({y, z});
            v[y].push_back({x, z});
        }
        ans=0;
        DFS(1, 0, 0);
        for(int i=1; i<=n; i++) v[i].clear();
        printf("%lld\n", ans);
    }
 
    return 0;
}
Practice 1 Date: Monday, March 18th, 2013 We highly encourage being environment friendly and trying all problems on your own. Implement exercise 2.3-7. Implement priority queue. Implement Quicksort and answer the following questions. (1) How many comparisons will Quicksort do on a list of n elements that all have the same value? (2) What are the maximum and minimum number of comparisons will Quicksort do on a list of n elements, give an instance for maximum and minimum case respectively. Give a divide and conquer algorithm for the following problem: you are given two sorted lists of size m and n, and are allowed unit time access to the ith element of each list. Give an O(lg m + lgn) time algorithm for computing the kth largest element in the union of the two lists. (For simplicity, you can assume that the elements of the two lists are distinct). Practice 2 Date: Monday, April 1st, 2013 We highly encourage being environment friendly and trying all problems on your own. Matrix-chain product. The following are some instances. Longest Common Subsequence (LCS). The following are some instances. X: xzyzzyx Y: zxyyzxz X:MAEEEVAKLEKHLMLLRQEYVKLQKKLAETEKRCALLAAQANKESSSESFISRLLAIVAD Y:MAEEEVAKLEKHLMLLRQEYVKLQKKLAETEKRCTLLAAQANKENSNESFISRLLAIVAG Longest Common Substring. The following are some instances. X: xzyzzyx Y: zxyyzxz X:MAEEEVAKLEKHLMLLRQEYVKLQKKLAETEKRCALLAAQANKESSSESFISRLLAIVAD Y:MAEEEVAKLEKHLMLLRQEYVKLQKKLAETEKRCTLLAAQANKENSNESFISRLLAIVAG Max Sum. The following is an instance. (-2,11,-4,13,-5,-2) Shortest path in multistage graphs. Find the shortest path from 0 to 15 for the following graph.   A multistage graph is a graph (1) G=(V,E) with V partitioned into K >= 2 disjoint subsets such that if (a,b) is in E, then a is in Vi , and b is in Vi+1 for some subsets in the partition; and (2) | V1 | = | VK | = 1.     Practice 3 Date: Monday, April 15th, 2013 We highly encourage being environment friendly and trying all problems on your own. Knapsack Problem. There are 5 items that have a value and weight list below, the knapsack can contain at most 100 Lbs. Solve the problem both as fractional knapsack and 0/1 knapsack. A simple scheduling problem. We are given jobs j1, j2… jn, all with known running times t1, t2… tn, respectively. We have a single processor. What is the best way to schedule these jobs in order to minimize the average completion time. Assume that it is a nonpreemptive scheduling: once a job is started, it must run to completion. The following is an instance. (j1, j2, j3, j4) : (15,8,3,10) Single-source shortest paths. The following is the adjacency matrix, vertex A is the source.  A B C D E A -1 3 B 3 2 2 C D 1 5 E -3 All-pairs shortest paths. The adjacency matrix is as same as that of problem 3.(Use Floyd or Johnson’s algorithm)     Practice 4 Date: Monday, May 8th, 2013 We highly encourage being environment friendly and trying all problems on your own. 0/1 Knapsack Problem. There are 5 items that have a value and weight list below, the knapsack can contain at most 100 Lbs. Solve the problem using back-tracking algorithm and try to draw the tree generated. Solve the 8-Queen problem using back-tracking algorithm.    
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值