深度学习实践
文章平均质量分 73
idotc
这个作者很懒,什么都没留下…
展开
-
深度学习实例一——手势数字识别(tensorflow&pytorch)
这是吴恩达老师深度学习工程师(网上有资源,大家可以去看看吴老师的课程,还是很有收获。),第二次课第三周的课后实例作业,可以作为初学者练手的好项目。原项目是tensorflow写的,我又用pytorch写了一遍。数据文件和完整代码都传到github上了。详情见:https://github.com/idotc/Gesture-digit-recognition一、Problem statement...原创 2018-12-05 23:47:43 · 14922 阅读 · 14 评论 -
深度学习-六种权重初始化
模型权重的初始化对于网络的训练很重要, 不好的初始化参数会导致梯度传播问题, 降低训练速度; 而好的初始化参数, 能够加速收敛, 并且更可能找到较优解。六种权重初始化一、W初始化为0在线性回归和logistics回归中可以使用,因为隐藏层只有一层。在超过一层的神经网络中就不能够使用了。因此如果所有的权重参数都为0,那么所有的神经元输出都是一样的,在back propagation的时候...原创 2019-06-30 13:13:25 · 3083 阅读 · 1 评论 -
深度学习-CNN中池化层和卷积层的反向传播
参考文献:1、 https://www.zhihu.com/question/587162672、 https://www.cnblogs.com/pinard/p/6494810.html3、 https://blog.csdn.net/qq_21190081/article/details/728717044、 http://jermmy.xyz/2017/12/16/2017-12-...转载 2019-07-04 23:51:17 · 2507 阅读 · 0 评论 -
深度学习-Caffe模型解析(不需要prototxt)和可视化
在模型训练中,有时候需要把模型的权重可视化出来,检查模型权重是否有问题。caffe模型中可视化往往需要一个prototxt文件,不是很方便,因此需要可以直接利用model解析的方法。一、利用model和prototxt可视化import caffeimport numpy as npimport matplotlib.pyplot as plt%matplotlib inlinede...原创 2019-07-13 23:46:09 · 572 阅读 · 0 评论 -
Pytorch:tensor的运算
一、tensor操作1. 新建A、torch.Tensor(shape)/torch.FloatTensor(shape):随机初始化一个维度为shape的张量。B、torch.randn(shape):用均值为0,方差为1的高斯分布初始化一个shape的张量。C、torch.rand(shape):在区间[0,1]上均匀分布,初始化一个shape的张量。2、Tensor的变换A...原创 2019-02-27 09:48:54 · 1327 阅读 · 0 评论 -
Pytorch:定义的网络结构层能否重复使用
**前言:**最近在构建网络的时候,有一些层参数一样,于是就没有定义新的层,直接重复使用了原来已经有的层,发现效果和模型大小都没有什么变化,心中产生了疑问:定义的网络结构层能否重复使用?因此接下来利用了一个小模型网络实验了一下。...原创 2019-01-23 17:05:25 · 6158 阅读 · 6 评论 -
Pytorch:模型的保存与加载
模型保存与加载常用有两种方法,第一种是保存整个模型,包括模型的结构和参数;第二种是保存模型的参数。推荐使用第二种,因为模型一旦很大,第一种加载耗时长,其次第二种加载方式更加灵活,可以加载其他模型的预训练参数,从而使用迁移学习的方法减小训练时长。一、保存/加载整个模型保存模型:torch.save(net, ‘model_net1.pkl’)加载模型net_parm = ‘model_...原创 2019-01-21 13:55:37 · 484 阅读 · 0 评论 -
Pytorch:使用GPU训练
本篇文章接着上篇文章(https://blog.csdn.net/qq_21578849/article/details/84841649) 的模型继续探讨如何使用GPU训练。使用GPU 训练可以大幅提升运算速度,降低时间成本,提高深度学习的体验感。 Pytorch 有一套很好的支持 GPU 运算体系.,因此使用起来非常方便。在代码中使用GPU训练主要有三处需要注意:模型转为cuda,数据转为c...原创 2018-12-24 23:48:18 · 40927 阅读 · 3 评论 -
Pytorch:权重初始化
在TensorFlow中,权重的初始化主要是在声明张量的时候进行的。 而PyTorch则提供了另一种方法:首先应该声明张量,然后修改张量的权重。通过调用torch.nn.init包中的多种方法可以将权重初始化为直接访问张量的属性。**1、不初始化的效果**在Pytorch中,定义一个tensor,不进行初始化,打印看看结果:w = torch.Tensor(3,4)print (w)...原创 2018-12-16 09:51:59 · 23500 阅读 · 6 评论 -
超详细教程:YOLO_V3(yolov3)训练自己的数据
前言:最近刚好做一个项目需要做detection,选择的算法是yolo v3,因为它既有速度又有精度,还非常灵活,简直是工业界良心。做项目免不了需要用到自己的数据集,所以的从头一个脚印的来,走通了之后决定写一个帖子,以免需要用的人少走歪路,节约时间。官网上已经教我们如何跑起来yolo v3,因此大部分时间其实花在制作数据集上。总体来说,分为四个步骤,分别是:标注数据,利用voc制作自己的数据集,...原创 2018-12-12 23:24:20 · 123513 阅读 · 194 评论 -
深度学习-常见的几种Normalization算法
Batch Normalization (BN)Layer Normalization (LN)Instance Normalization (IN)Group Normalization (GN)一、Batch Normalization (BN)一个feature map为:NCW*H,BN在N、W、H维度上求均值和方差,保留C的维度。 比如在第一个样本的第一个通道,第二个样本的...原创 2019-08-07 22:29:08 · 496 阅读 · 0 评论