超详细教程:YOLO_V3(yolov3)训练自己的数据

前言:最近刚好做一个项目需要做detection,选择的算法是yolo v3,因为它既有速度又有精度,还非常灵活,简直是工业界良心。做项目免不了需要用到自己的数据集,所以得从头一个脚印的来,走通了之后决定写一个帖子,让需要用的人少走歪路,节约时间。
官网上已经教我们如何跑起来yolo v3,因此大部分时间其实花在制作数据集上。总体来说,分为四个步骤,分别是:标注数据,利用voc制作自己的数据集,下载并编译源码,局部修改和大功告成(前两步可以在方便操作的环境下(windows或linux)进行,后面几步在linux环境进行)

一、标注数据

  1. 工具:
    使用的标注工具是labelimg,其他标注工具也行,但是生成的标注label文件要是xml。这里给一个labelimg软件的传送门 https://pan.baidu.com/s/1tuIQmuyedRHP1WeGVVSx_Q 提取码: ejgx 。

  2. 数据集编号:
    为了规划自己的数据,减少出错的可能性,最好自己先给自己的图片编一个合理的序号,比如0001~0999。

  3. 标注数据:
    利用软件把自己的数据标注好。每一个图片名对应的有一个相应名字的label.xml。
    如图所示

在使用YOLOv3训练自己的数据集时,你需要进行以下几个步骤的修改: 1. 数据集标注格式:YOLOv3使用的是Darknet格式的标注文件,每个图像对应一个同名的txt文件,其中包含了物体类别和边界框的位置信息。如果你的数据集使用其他格式,你需要将其转换为Darknet格式。 2. 类别数量:根据你的数据集中物体的类别数量,你需要在模型配置文件中修改类别数目。在YOLOv3中,这个配置文件通常是`yolov3.cfg`或`yolov3-tiny.cfg`。 3. 锚框(anchors)设置:YOLOv3使用了预定义的锚框来提取不同尺度的目标框。如果你的数据集中的对象尺度与预定义锚框不匹配,你需要在模型配置文件中修改锚框的尺寸。这些锚框信息通常在`[yolo]`层中定义。 4. 输入图像尺寸:YOLOv3网络对输入图像的大小有一定要求。默认情况下,YOLOv3要求输入图像的宽高为32的倍数。如果你的图像尺寸不满足这个要求,你需要在模型配置文件中修改对应的参数。 5. 训练参数:根据你的数据集和训练需求,你可能需要修改训练参数,如学习率、批次大小、迭代次数等。这些参数通常在训练脚本中进行设置。 除了以上修改,你还需要注意确保数据集的正确性,包括标注准确、类别均衡、图像质量等。此外,为了获得更好的检测性能,你可能需要调整其他超参数,如网络深度、特征图数量等。这些超参数可以在模型配置文件中进行调整。
评论 194
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值