一、回顾整数规划的求解
整数规划可以使用单纯形法进行求解(可以参考上篇博客,传送门),求解的结果可能并不是整数。但是在实际问题中,往往很多结果需要的是整数解,比如排班问题,生产车间问题等,因此整数规划也需要我们掌握求解方法。
二、分支定界法介绍
1. 是什么
分枝定界法是由学者查理德·卡普(Richard M.Karp)在20世纪60年代发明,该方法把问题的可行解展开如树的分枝,再经由各个分枝中寻找最佳解。
分枝定界法也能够使用在混合整数规划问题上,其为一种系统化的解法,一般用单纯形法解出线性规划最佳解后,将非整数值的决策变量分割成最接近的两个整数,加入原问题中,形成两个子问题(或分枝)分别求解,如此便可求得目标函数的上限(上界)或下限(下界),从而寻得最佳解。
2. 求解思想
在每次分支后,对凡是超出定义域的那些子集不再做进一步分支。这样,解的许多子集(即搜索树上的许多结点)就可以不予考虑了,从而缩小了搜索范围。一直重复分支的过程直到找出可行解为止,该可行解的值不大于任何子集的界限。具体的求解思路可以