分支定界法求解整数规划

本文介绍了分支定界法作为求解整数规划的一种有效方法,由Richard M. Karp在20世纪60年代提出。通过将问题拆分为子问题并设置上下界来逐步缩小搜索范围,直至找到最优解。详细阐述了分支定界法的原理、求解步骤,并提及在Python中的实现。
摘要由CSDN通过智能技术生成

一、回顾整数规划的求解

       整数规划可以使用单纯形法进行求解(可以参考上篇博客,传送门),求解的结果可能并不是整数。但是在实际问题中,往往很多结果需要的是整数解,比如排班问题,生产车间问题等,因此整数规划也需要我们掌握求解方法。

二、分支定界法介绍

     1.  是什么

       分枝定界法是由学者查理德·卡普(Richard M.Karp)在20世纪60年代发明,该方法把问题的可行解展开如树的分枝,再经由各个分枝中寻找最佳解。
       分枝定界法也能够使用在混合整数规划问题上,其为一种系统化的解法,一般用单纯形法解出线性规划最佳解后,将非整数值的决策变量分割成最接近的两个整数,加入原问题中,形成两个子问题(或分枝)分别求解,如此便可求得目标函数的上限(上界)或下限(下界),从而寻得最佳解。

     2.  求解思想

       在每次分支后,对凡是超出定义域的那些子集不再做进一步分支。这样,解的许多子集(即搜索树上的许多结点)就可以不予考虑了,从而缩小了搜索范围。一直重复分支的过程直到找出可行解为止,该可行解的值不大于任何子集的界限。具体的求解思路可以

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值