多层感知机(包含隐藏层的神经网络)

import torch
import numpy as np
from matplotlib import pylab as plt
import torch.nn.functional as F
#构造数据
x =torch.unsqueeze(torch.linspace(-1,1,100),dim=1)
y = pow(x,2)+0.2*torch.rand(x.size())
#plt.scatter(x,y)
#plt.show()

#搭建神经网络
class Net(torch.nn.Module):
    def __init__(self,n_feature,n_hidden,n_output):
        super(Net,self).__init__()#这两行是固定的官方继承定义
        self.hidden=torch.nn.Linear(n_feature,n_hidden)
        self.predict=torch.nn.Linear(n_hidden,n_output)

    def forward(self,x):
        x=F.relu(self.hidden(x))
        x=self.predict(x)
        return x
net = Net(1,10,1)

#更新可视化
plt.ion()# 打开交互模式
plt.show()

optimizer=torch.optim.SGD(net.parameters(),lr=0.5)#优化器 随机梯度下降 传入参数 定义学习率
loss_func=torch.nn.MSELoss()#平方损失函数

for t in range(100):
    prediction=net(x)
    loss=loss_func(prediction,y)

    optimizer.zero_grad()#梯度先全部清零
    loss.backward()#计算梯度
    optimizer.step()

    if t%5==0:
        plt.cla# Clear axis即清除当前图形中的当前活动轴。其他轴不受影响。
        plt.scatter(x,y)
        plt.plot(x.detach().numpy(),prediction.detach().numpy(),'r-',lw=0.5)#lw:折线图的线条宽度
        plt.text(0.5,0,'loss=%.4f'%loss.item(),fontdict={'size':20,'color':'red'})
        plt.pause(0.1)
已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 1024 设计师:白松林 返回首页