概率论与数理统计

本博客用于记录概率论与数理统计学习笔记。

目录

p1 绪论

p2 样本空间和随机事件

随机试验
  1. 在同样条件下重复进行
  2. 知道所有试验可能出现的结果
  3. 在实验室不知道这次会出现哪个结果
样本空间(集合)

随机试验所有可能的结果。

随机事件

样本空间的子集。
几个特殊的随机事件:

  1. 必然事件:一定会发生的事假。(比如把整个样本空间看做一个随机事件)
  2. 不可能事件:空集
  3. 基本事件:只包含一个样本点
    例如:公交站现在有多少个人在等车?
    样本空间:S={x : x>=0}
    事件A表示等车人数大于等于0 A={x : x>=0} (必然事件)
    事件A表示等车人数大于等于5 B={x : x>=5} (随机事件)
    事件C表示恰好有三人等车 C={3} (基本事件)
    事件D等车人数多于3且小于3 D={} (不可能事件)

p3 事件的相互关系和运算

关系
  1. 包含 A ⊂ B A\subset B AB
  2. 相等 A=B
运算
  1. 和事件 A ∪ B A\cup B AB
  2. 积事件 A ∩ B A\cap B AB
  3. 逆事件 A ‾ \overline A A
    在这里插入图片描述

p4频率

随机事件A在N次随机实验中发生次数所占的比例,随着N增大趋于稳定。最终稳定到随机事件A发生的概率。

p5概率

讲到概率的的性质和一些简单的计算公式。

p6古典概型(等可能概型)

  1. 样本空间的样本点有限(有限性)
  2. 每个样本点出现概率相等(等可能性)

p7条件概率的定义

P ( B ∣ A ) P(B|A) P(BA) : A发生的情况下B发生的概率
P ( B ∣ A ) = P ( B A ) P ( A ) P(B|A)= \frac {P(BA)} {P(A)} P(BA)=P(A)P(BA)
后面包含了一些经典例题

p8条件概率

经典例题

p9全概率和贝叶斯公式

划分

样本空间S
第i事件A即为 A i A_i Ai
划分满足以下性质:

  1. A 1 ∪ A 2 ∪ A 3 ∪ . . . . A n = S A_1\cup A_2\cup A_3 \cup....A_n=S A1A2A3....An=S
  2. 任意j,k满足 A j ∩ A k = ϕ A_j \cap A_k=\phi AjAk=ϕ
全概率公式

在这里插入图片描述

贝叶斯

在这里插入图片描述

p10全概率和贝叶斯公式

例题讲解

p11事件的独立性

P ( A , B ) = P ( A ) ∗ P ( B ) P(A,B)=P(A)*P(B) P(A,B)=P(A)P(B)
独立和不相容两个概念,不相同。
独立性考虑的是A,B会不会相互影响
相容考虑的是两个事件有无交集

p12事件的独立性

经典例题

p13随机变量

随机变量实际上是一个函数:一个将样本点映射到实数空间的函数。方便我们描述随机数事件。

p14随机变量

分布

所有随机变量取值及其对应概率

p15离散随机变量的分布

二项分布(0-1分布)

二项分布记为:
X ∼ 0 − 1 ( p ) X\sim 0-1(p) X01(p) 发生概率为p
也可记为 X ∼ B ( 1 , p ) X\sim B(1,p) XB(1,p) 也可表示进行一次伯努利实验,发生的概率为p
X ∼ B ( n , p ) X\sim B(n,p) XB(n,p)表示进行n次伯努利实验,发生的概率为p
例:抛一枚不均匀的硬币,正面向上概率为0.4
用X表示抛9次硬币正面向上的次数:
X服从二项分布 X ∼ B ( 9 , 0.4 ) X \sim B(9,0.4) XB90.4
用X表示抛9次硬币正面向上的次数:
X服从二项分布 X ∼ B ( 9 , 0.6 ) X \sim B(9,0.6) XB90.6
二项分布概率计算方法 P ( X = k ) = C n k p k ( 1 − p ) n − k P(X=k)=C_n^k p^k{(1-p)}^{n-k} P(X=k)=Cnkpk(1p)nk

p16离散随机变量的分布

泊松分布

X ∼ π ( λ ) 或 X ∼ P ( λ ) X \sim \pi(\lambda) 或 X \sim P(\lambda) Xπ(λ)XP(λ)
概率计算公式:
P ( x = k ) = λ k e − λ k ! P(x=k)=\frac{\lambda ^ke^{- \lambda}}{k!} P(x=k)=k!λkeλ
在这里插入图片描述
当n>10,p<0.1时泊松分布可看做二项分布的近似。概率计算结果基本一致。
在这里插入图片描述

几何分布

几何分布记为:
x ∼ G e o m ( p ) x \sim Geom(p) xGeom(p)
概率计算公式:
P ( X = k ) = p ( 1 − p ) k − 1 P(X=k)=p{(1-p)}^{k-1} P(X=k)=p(1p)k1
典型服从几何分布例子:
我们投掷一枚骰子,6点向上时停止投掷。投掷的次数服从几何分布。

p17分布函数

(可以用来描述连续型和离散型随机变量的分布)
分布函数
F ( x ) = P ( X ≤ x ) 有 时 记 作 : F X ( x ) = P ( X ≤ x ) F(x)=P(X\leq x)有时记作:F_X(x)=P(X\leq x) F(x)=PXxFX(x)=PXx

p18分布函数

离散型随机变量分布和分布函数互推的例子

p19分布函数

连续性随机变量的分布函数

p20 连续性随机概率密度函数

连续性变量才有概率密度函数
在这里插入图片描述

p21 连续性随机概率密度函数

经典例题

p22 均匀分布

记作X~U(a,b)
在这里插入图片描述

p23 指数分布

记作 X ∼ E ( λ ) X \sim E(\lambda) XE(λ)或者 X ∼ E x p ( λ ) X \sim Exp(\lambda) XExp(λ)
在这里插入图片描述
指数分布的无记忆性:
P ( X > t 0 + t ∣ X > t 0 ) = P ( X > t ) P(X>t_0+t|X>t_0)=P(X>t) P(X>t0+tX>t0)=P(X>t)
例如:在这里插入图片描述

p24 高斯(正态,误差)分布

记作: X ∼ N ( μ , σ 2 ) X \sim N(\mu,\sigma ^2) XN(μ,σ2)
密度函数:
f ( x ) = 1 2 π σ e − ( x − μ ) 2 2 σ 2 f(x)=\frac1{\sqrt{2\pi} \sigma}e^{-\frac{(x- \mu)^2}{2\sigma^2}} f(x)=2π σ1e2σ2(xμ)2
用途:
在这里插入图片描述

p25 标准正态分布

记作: X ∼ N ( 0 , 1 ) X \sim N(0,1) XN(0,1)
概率密度函数:
φ ( x ) = 1 2 π e − x 2 2 \varphi(x)=\frac1{\sqrt{2\pi} }e^{-\frac{x^2}{2}} φ(x)=2π 1e2x2
分布函数常常记作:
ϕ ( x ) \phi(x) ϕ(x)

p26,27随机变量的函数分布

简单来说就是y=f(x)已知x的分布(假设x是离散随机变量)或者x的密度函数(x为连续性随机变量)求y的分布函数或者密度函数。
另外:
x=h(y) 是y=f(x)的反函数。h()通常用来表示反函数。

p28 二元离散型随机变量的联合概率分布

分布(率),分布函数,概率密度函数 是三个不同的概念

在这里插入图片描述

p29 二元离散型随机变量的条件概率分布

在这里插入图片描述

p30 二元离散型随机变量的边缘概率分布

在这里插入图片描述

p31二元随机变量的联合分布函数

在这里插入图片描述

p32 二元随机变量的边际分布函数和条件分布函数

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

p33 二元随机变量的联合概率密度函数

在这里插入图片描述

p34 边缘概率密度函数

在这里插入图片描述

p35 条件概率密度函数

在这里插入图片描述

p36 条件概率密度函数例题

p37 二元随机变量的均匀分布和正态分布

p38随机变量的独立性

在这里插入图片描述
在这里插入图片描述

p39二元正态分布的独立性

在这里插入图片描述

二元随机变量一些性质推广到多元随机变量

p40二元随机变量的函数分布

1. 离散型

在这里插入图片描述

2.连续型

在这里插入图片描述

p41 连续性随机变量Z=X+Y的分布

在这里插入图片描述

p42 连续性随机变量Z=X+Y的分布

例题

p43 Min(X,Y)和Max(X,Y)的分布

在这里插入图片描述

p44 随机变量的数学期望

1.离散型

在这里插入图片描述

1.连续型

在这里插入图片描述

p45常见分布的期望求解方法

p46 随机变量函数的数学期望

在这里插入图片描述
在这里插入图片描述

p47 二元随机变量函数的数学期望

在这里插入图片描述
在这里插入图片描述

p48数学期望的性质

在这里插入图片描述

p49 方差的定义和常见分布的方差推导

1.定义

在这里插入图片描述

2.与期望之间的推导公式

在这里插入图片描述
在这里插入图片描述

p50方差的性质及其证明

在这里插入图片描述
在这里插入图片描述

p51 正太分布方差的性质

在这里插入图片描述

p52 协方差的定义及其性质

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

p53相关系数及其性质

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

P54 不向相关与独立

1.不相关的定义

在这里插入图片描述

1.不相关的性质

在这里插入图片描述
在这里插入图片描述

P55 矩,协方差矩阵,多远正太分布的性质

1.原地矩和中心矩

在这里插入图片描述

2.混合矩

在这里插入图片描述

3.N元随机变量的期望

在这里插入图片描述

4.n元随机变量的协方差矩阵

在这里插入图片描述

5.N元正态随机变量的矩阵表示及其性质

**加粗样式**
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

P56依概率收敛和切比雪夫不等式

1.依概率收敛

在这里插入图片描述

2.切比雪夫不等式

定义了某个值出现在均值附近概率的上下界
在这里插入图片描述

P57 大数定律

1.贝努里大数定律

在这里插入图片描述

2.贝努里大数定律意义

在这里插入图片描述

3.大数定律

在这里插入图片描述
不同的条件会得到不同的大数定律

4.切比雪夫大数定律的推论

在这里插入图片描述

P58 大数定律

1.辛钦大数定律

在这里插入图片描述

1.辛钦大数定律意义

在这里插入图片描述

P59 中心极限定理

1.独立同分布的中心极限定理

在这里插入图片描述

1.德莫弗中心极限定理

在这里插入图片描述

  • 7
    点赞
  • 34
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值