朴素贝叶斯

1.贝叶斯公式

P ( Y = c k ∣ X = x ) = P ( X = x ∣ Y = c k ) P ( Y = c k ) ∑ k P ( X = x ∣ Y = c k ) P ( Y = c k ) P(Y=c_k|X=x)=\frac{P(X=x|Y=c_k)P(Y=c_k)}{\sum _k {P(X=x|Y=c_k)P(Y=c_k)}} P(Y=ckX=x)=kP(X=xY=ck)P(Y=ck)P(X=xY=ck)P(Y=ck)

条件独立性假设:
每个特征之间相互独立
由此可对 P ( X = x ∣ Y = c k ) P(X=x|Y=c_k) P(X=xY=ck)变形
P ( X = x ∣ Y = c k ) = P ( X ( 1 ) = x ( 1 ) , X ( 2 ) = x ( 2 ) . . . X ( n ) = x ( n ) ∣ Y = c k ) = ∏ j = 1 n P ( X ( j ) = x ( j ) ∣ Y = c k ) \begin{aligned} P(X=x|Y=c_k) =P(X^{(1)} &=x^{(1)},X^{(2)}=x^{(2)}...X^{(n)}=x^{(n)}|Y=c_k) \\ &= \prod_{j=1}^n P(X^{(j)}=x^{(j)}|Y=c_k) \end{aligned} P(X=xY=ck)=P(X(1)=x(1),X(2)=x(2)...X(n)=x(n)Y=ck)=j=1nP(X(j)=x(j)Y=ck)

贝叶斯公式转换成:
P ( Y = c k ∣ X = x ) = ∏ j = 1 n P ( X ( j ) = x ( j ) ∣ Y = c k ) P ( Y = c k ) ∑ k P ( X = x ∣ Y = c k ) P ( Y = c k ) P(Y=c_k|X=x)=\frac{\prod_{j=1}^n P(X^{(j)}=x^{(j)}|Y=c_k)P(Y=c_k)}{\sum _k {P(X=x|Y=c_k)P(Y=c_k)}} P(Y=ckX=x)=kP(X=xY=ck)P(Y=ck)j=1nP(X(j)=x(j)Y=ck)P(Y=ck)

c k c_k ck是样本的第K类的标签, x ( n ) x^{(n)} x(n)是样本 x x x第n个特征的取值

所以当判断样本 x x x属于那个分类时只需求得所有 P ( Y = c ( 1 , 2 , 3... k ) ∣ X = x ) P(Y=c_(1,2,3...k)|X=x) P(Y=c(1,2,3...k)X=x)并选择最大的 c k c_k ck作为分类标签,即
y = f ( x ) = a r g max ⁡ c k ∏ j = 1 n P ( X ( j ) = x ( j ) ∣ Y = c k ) P ( Y = c k ) ∑ k P ( X = x ∣ Y = c k ) P ( Y = c k ) y=f(x)=arg \max_{c_k}{\frac{\prod_{j=1}^n P(X^{(j)}=x^{(j)}|Y=c_k)P(Y=c_k)}{\sum _k {P(X=x|Y=c_k)P(Y=c_k)}}} y=f(x)=argckmaxkP(X=xY=ck)P(Y=ck)j=1nP(X(j)=x(j)Y=ck)P(Y=ck)
由于对所有 c k c_k ck来说,他们的分子是一样的,所以只需求得:
y = a r g max ⁡ c k ∏ j = 1 n P ( X ( j ) = x ( j ) ∣ Y = c k ) P ( Y = c k ) y=arg \max_{c_k}{\prod_{j=1}^n P(X^{(j)}=x^{(j)}|Y=c_k)P(Y=c_k)} y=argckmaxj=1nP(X(j)=x(j)Y=ck)P(Y=ck)
(此为后验概率最大化准则的分类器公式)

2.损失函数

L ( Y , f ( x ) ) = { 1 , ( Y ≠ f ( x ) ) 0 , ( Y = f ( x ) ) L(Y,f(x))=\left\{ \begin{aligned} 1 & , & (Y \neq f(x)) \\ 0 & , & (Y=f(x)) \end{aligned} \right. L(Y,f(x))={10,,(Y̸=f(x))(Y=f(x))
期望风险
R e x p = E x ∑ k = 1 K ( L ( c k , f ( x ) ) P ( c k ∣ X ) ) R_{exp}=E_x \sum_{k=1}^{K}(L(c_k,f(x)) P(c_k|X)) Rexp=Exk=1K(L(ck,f(x))P(ckX))
期望风险越小越好,整体损失越小,由最小期望风险也可以推导
f ( x ) = a r g min ⁡ ∑ k = 1 K ( L ( c k , y ) P ( c k ∣ X = x ) ) = a r g min ⁡ ∑ k = 1 K P ( c k ! = y ∣ X = x ) = a r g min ⁡ ( 1 − P ( c k = y ∣ X = x ) ) = a r g max ⁡ P ( c k = y ∣ X = x ) \begin{aligned} f(x) &=arg \min \sum_{k=1}^{K}(L(c_k,y) P(c_k|X=x)) \\ &=arg \min \sum_{k=1}^{K}P(c_k != y|X=x)\\ &= arg \min (1-P(c_k = y|X=x))\\ &= arg \max P(c_k = y|X=x) \end{aligned} f(x)=argmink=1K(L(ck,y)P(ckX=x))=argmink=1KP(ck!=yX=x)=argmin(1P(ck=yX=x))=argmaxP(ck=yX=x)
和上述分类器原理一直,由此可知上述分类器公式满足期望风险最小

3.参数估计方法

3.1极大似然估计

简单来说就是直接数样本,把样本中出现 c k c_k ck的概率当做 c k c_k ck在自然界中自己生成的概率。
P ( Y = c k ) = ∑ i = 1 N I ( y i = c k ) N P(Y=c_k)=\frac{\sum_{i=1}^N I(y_i=c_k)}{N} P(Y=ck)=Ni=1NI(yi=ck)
含义:标签为 c k c_k ck的样本数占总样本数的比例
P ( X ( j ) = a j l ∣ Y = c k ) = ∑ i = 1 N I ( x i j = a j l , y i = c k ) ∑ i = 1 N I ( y i = c k ) P(X^{(j)}=a_{jl}|Y=c_k)=\frac{\sum_{i=1}^N I(x^{j}_i=a_{jl},y_i=c_k)}{\sum_{i=1}^N I(y_i=c_k)} P(X(j)=ajlY=ck)=i=1NI(yi=ck)i=1NI(xij=ajl,yi=ck)
含义:样本标签为 c k c_k ck样本中样本 x x x第j个特征取值= a j l a_{jl} ajl所占的比例

3.2贝叶斯估计

使用极大似然估计可能会导致都要估计的概率值为0,
P ( X ( j ) = a j l ∣ Y = c k ) = ∑ i = 1 N I ( x i j = a j l , y i = c k ) + λ ∑ i = 1 N I ( y i = c k ) + S j λ P(X^{(j)}=a_{jl}|Y=c_k)=\frac{\sum_{i=1}^N I(x^{j}_i=a_{jl},y_i=c_k)+\lambda}{\sum_{i=1}^N I(y_i=c_k) + S_j \lambda} P(X(j)=ajlY=ck)=i=1NI(yi=ck)+Sjλi=1NI(xij=ajl,yi=ck)+λ
λ \lambda λ为正数,
λ = 0 \lambda=0 λ=0是就是极大似然估计
λ = 1 \lambda=1 λ=1时被称为拉普拉斯平滑
s j s_j sj为样本 x x x标签为 c k c_k ck且第j个特征所有取值的数量

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值