线性代数(Linear Algebra)这门学科大家并不陌生,如果有人还是觉得有点生疏,那么“行列式”、“矩阵”这些概念你总该还有印象。大学各个专业都会深浅不同地学习这门课,文科一般放在《大学数学》里,工科生一般在《线性代数》或《高等数学》中见到它,而我们数学系更多地是上《高等代数》这门课。线性代数之所以能同微积分一同挤进大学数学,就在于它模型的简单性和应用的广泛性。它不光是数学研究的一个基本工具,还是很多工商业学科的理论基础。
但有意思的是,线性代数成为一门系统学科却还是20世纪初的事。在此之前,各种相关理论独立发展,然后产生交叉,最后在公理化和抽象代数的带动下,终于瓜熟蒂落,形成一套完整的学科。这其实也并不奇怪,它的成长经历和大部分数学学科一样,先是在具体应用中作为一种方法被提出来,然后逐渐从中提取出普遍性理论并形成学科。线性关系作为最简单的一种关系,它的模型和方法存在于很多地方,所以最初它们只是以不同的分支独立发展,而公理化的方法最终捕捉到了它们“线性”的共性,并利用“线性空间”的概念将它们串联起来。
简单来说,“线性”就是变量间的“一次”、"正比例"关系,变量的变化率是恒定的。直观来讲,所有元素之间有式子(1)中的关系,其中kiki是系数。这样的关系实在太普遍,它哪怕在最古老的文明中大家都是驾轻就熟的。古人很早就开始解一些线性方程(组),并形成了一些实用的方法,我国的《九章算术》就给出解三元一次方程组的一般方法,它和多元线性方程组的“高斯消元法”本质上是一样的。
解多元线性方程组的过程中,莱布尼茨(Leibniz)最先使用了行列式表示低维方程的解,克莱姆(Cramer)则给出了一般方程组的解。这时的行列式还只是一种记号,仅仅用于方程组解的形式表示。此后,范德蒙(Vandermonde)将行列式独立出来,并研究了行列式的子式展开法,这标志着行列式作为一门学科的开始。而柯西(Cauchy)则对行列式进行了系统的研究,融合矩阵的概念并得出许多重要的结论,故柯西也被当做近代意义上行列式的创始人。
虽然我们一般说“矩阵的行列式”,但其实矩阵概念的产生却晚于行列式。最初大家也只是形式上使用着这种结构(纵横排列),凯莱(Cayley)最先将矩阵用单个字母表示,这标志着人们开始接受了矩阵作为一个独立个体的存在,凯莱的成果也使它成为矩阵理论的创始人。行列式和矩阵大部分时候是独立发展的,它们的内容和方法关系也并不紧密,而最终却互相成就,结合在了一起。
Cauchy(1789-1857) Cayley(1821-1895)
线性代数的另一个来源是解析几何,空间(平面)点的向量化,使得利用代数研究几何非常方便,空间元素的向量定义,使得讨论高维空间成为可能。其实广义的向量并不仅限于空间的讨论,它本质上只是普遍存在的线性关系的一种表示。即使在非线性的场合,也可以在局部用线性关系来逼近,这在计算数学中有着广泛的应用。另外人们还发现,要讨论向量空间的变换关系,最终还是会引出方程组和矩阵的讨论,由此我也决定从向量空间开启我们的线性之路。
受到公理化思潮的影响,线性代数的很多基本概念也可以用抽象代数的语言来表示。既然我们已经学习过抽象代数,在行文中我也将不回避相关概念的引用,但其实只要你知道基本概念,就不会影响理解。这里我们相当于把线性代数作为抽象代数的一个分支来讨论,只不过这里研究的结构更为特殊而已。
空间向量中还有一些具体的问题,一个是二次曲面(线)方程的分类,借助于矩阵理论可以将曲面(线)方程化简为最简形式,从而便于分类,这部分内容就是后面的二次型理论。另外一个是空间几何中长度、角度的概念需要扩展到一般的向量空间中,这部分内容将在最后简单介绍。多项式理论也是线性代数的基本工具,由于在抽象代数中已经以更高的视角讨论过,这里就不再阐述了。关于矩阵还有一些独立的分支学科,比如矩阵论、矩阵分析,这些内容其实与“线性”关系不大,我打算另开课题介绍。