数值优化学习——wolfe条件里的线搜索算法

本文介绍了数值优化中的Wolfe条件,这是一种常用且高效的线搜索终止条件。线搜索过程确保在下降方向找到满足强Wolfe条件的步长。算法包括两步:初始步长估计和zoom函数的递归应用,用于逐步缩小区间直至找到合适步长。在过程中,检查足够下降条件和曲率条件,确保步长满足要求。zoom函数的调用策略确保了在有限迭代内找到满足条件的步长。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

翻译自numerical optimization Chapter3 Line Search Methods
【没写完,可参考http://blog.csdn.net/fangqingan_java/article/details/46405669
Wolfe条件(或强Wolfe条件)是广泛使用并且较为有效的终止条件。

下面描述一个一维的线搜索过程,该过程确保对于给定的任意参数c1,c2(1>c2>c>0),能够找到一个能够满足强Wolfe条件的步长。 首先,我们假设方向p是下降方向,函数f沿着该方向在下面是有界的。

算法分为两个步骤,第一步首先开始于一个对于步长α的估计值α1,然后后续不断扩大其大小,直到找到一个合适的步长或者一个包含目标步长的区间。如果是后者的话(找到区间),就需要不断调用第二步,称为zoom的函数,来不断缩小区间大小,直到找到合适步长。

line search算法的一个形式说明如下。公式这里写图片描述为足够的下降条件,公式

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值