数值优化(Numerical Optimization)学习系列-线搜索方法(LineSearch)

线搜索在数值优化中扮演关键角色,涉及到步长α的选择及其算法。精确算法包括一元二次问题的求解,非精确算法如Armijo、Curvature、Wolfe和Goldstein条件用于步长确定。此外,介绍了步长求解算法,如二次和三次插值法,以及zoom算法。线搜索的收敛性和收敛速度取决于搜索方向,如最速下降、牛顿或拟牛顿方法。最后讨论了牛顿方法中Hessian矩阵的替代策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

概述

在求解最优化问题中,线搜索是一类非常重要的迭代算法。线搜索的迭代过程是xk+1=xk+αkpk。其中αkpk分别表示搜索步长和搜索方向,因此线搜索需要解决如何求解步长和确定搜索方向,该小结主要介绍
1. 步长αk的选择
2. 步长的实现算法
2. 线搜索的收敛性
3. 牛顿方法的优化

步长α的选择

根据迭代算法xk+1=xk+αkpk,根据之前的介绍搜索方向pk需要满足,它是一个下降方向,即满足fkpk0,则pk=B1kfk,B为对称非奇异矩阵,根据Bk的选择会产生以下几个方向:
1. Bk=I时,搜索方向为负梯度方向,该方法为最速下降方向。
2. Bk=2fk时,该方法为牛顿方法。
3. Bk需要满足对称正定矩阵,该方法为拟牛顿方法。
当搜索方向确定后,下一步就要确定步长。

问题形式

求解步长需要解决的一个最优化问题是,在确定了下降方向pk后,求解一个一元最优化问题

minϕ(α)=f(xk+αpk)
.

精确算法

对于一个一元二次问题,最优解形式为Tf(xk+αpk)pk=0,即Tfk+1pk=0

性质:对于最速下降法,当选择最优步长时,每一步的搜索方向和上一步是正交的,即pTk+1pk=0

证明:由于当选择为最优步长时满足Tfk+1pk=0。因此性质成立,pk+1=fTk+1

非精确算法

非精确算法的思路就是寻找步长α的一个区间,通过逐步二分的方法去寻找满足条件的点。当搜索结束时,需要满足该步长能够对目标函数带来充分的减少。为提高非精确算法的搜索效率,α需要满足一定的条件。

Armijo条件

Armijo是一个相对比较简单的条件,即目标函数需要充分小。

f(xk+αpk)f(xk)+c1αfTkpk,c1(0,1)

通常情况下记:
ϕ(α)=f(xk+αpk)
表示原始最优化目标函数。
l(α)=f(xk)+c1αfTkpk
表示退化后的目标函数。
在实际应用中, c1 选择为10^-4,满足Armijo条件的情况如下图所示 这里写图片描述

Curvature条件

Curvature条件是指:

ind = find(desc<0); stepmax = min(-(SigmaNew(ind))./desc(ind)); deltmax = stepmax; if isempty(stepmax) || stepmax==0 Sigma = SigmaNew; return end if stepmax > 0.1 stepmax=0.1; end %----------------------------------------------------- % Projected gradient %----------------------------------------------------- while costmax<costmin [costmax, S] = costgraph(KH,stepmax,desc,SigmaNew); if costmax<costmin costmin = costmax; SigmaNew = SigmaNew + stepmax * desc; %------------------------------- % Numerical cleaning %------------------------------- % SigmaNew(find(abs(SigmaNew<option.numericalprecision)))=0; % SigmaNew=SigmaNew/sum(SigmaNew); % SigmaNew =SigmaP; % project descent direction in the new admissible cone % keep the same direction of descent while cost decrease %desc = desc .* ( (SigmaNew>0) | (desc>0) ) ; desc = desc .* ( (SigmaNew>option.numericalprecision)|(desc>0)); desc(coord) = - sum(desc([[1:coord-1] [coord+1:end]])); ind = find(desc<0); if ~isempty(ind) stepmax = min(-(SigmaNew(ind))./desc(ind)); deltmax = stepmax; costmax = 0; else stepmax = 0; deltmax = 0; end end end %----------------------------------------------------- % Linesearch %----------------------------------------------------- Step = [stepmin stepmax]; Cost = [costmin costmax]; [val,coord] = min(Cost); % optimization of stepsize by golden search while (stepmax-stepmin)>option.goldensearch_deltmax*(abs(deltmax)) && stepmax > eps stepmedr = stepmin+(stepmax-stepmin)/gold; stepmedl = stepmin+(stepmedr-stepmin)/gold; [costmedr, S1] = costgraph(KH,stepmedr,desc,SigmaNew); [costmedl, S2] = costgraph(KH,stepmedl,desc,SigmaNew); Step = [stepmin stepmedl stepmedr stepmax]; Cost = [costmin costmedl costmedr costmax]; [val,coord] = min(Cost); switch coord case 1 stepmax = stepmedl; costmax = costmedl; S = S2; case 2 stepmax = stepmedr; costmax = costmedr; S = S2; case 3 stepmin = stepmedl; costmin = costmedl; S = S2; case 4 stepmin = stepmedr; costmin = costmedr; S = S1; end end %--------------------------------- % Final Updates %--------------------------------- CostNew = Cost(coord); step = Step(coord); % Sigma update if CostNew < CostOld SigmaNew = SigmaNew + step * desc; end Sigma = SigmaNew;
05-25
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值