python- pandas cumsum用法(求累计次数)

本文主要是针对 cumsum函数的一些用法。具体应用场景看下面的数据集。


第一列是userID,第二列是安装的时间,第三列是安装的次数。

我们现在想做一件事情。就是统计用户在某一天前累计的安装次数。

譬如,对userID为20的用户,问在16天前,其安装次数为多少? 答案应该是4次。用python的实现也很简单。

又譬如,userID为44在19天前安装的次数,那就应该是1+3+1+1=6次。


具体代码:(假设数据集为data)

由于是针对每个userID,所以是需要将userID划分一下(这个方法在组内排序的时候有提到,可以参考前面的文章)。

所以才有下面这一句

groupby(['userID'])
然后,分完组后需要统计的Times,所以就是下面这一句

data['Times'].groupby(['userID'])

最后,我们需要的是累加量,所以,用cumsum()这个函数。

data['sum_Times']=data['Times'].groupby(['userID']).cumsum()

用得到的结果放在一列。

最后得到结果如下:


可以从sum_Times这列看到,每一个值都是相应userID在前一行的累加值。


评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值