Python基础知识_day10_文件操作_pickle模块_os模块_shutil模块

本文详细介绍了Python中的文件操作,包括文本文件和二进制文件的读写,以及如何使用pickle模块进行序列化。此外,还讲解了os模块的文件和目录操作,如创建、删除,以及os.path的相关方法。最后,介绍了shutil模块在文件和文件夹拷贝、压缩中的应用。
摘要由CSDN通过智能技术生成

1. 文本文件和二进制文件

按文件中数据组织形式,我们把文件分为文本文件和二级制文件两大类。

  • 文本文件

文本文件存储的是普通“字符”文本,默认为unicode字符集,可以使用记事本程序打开。但是,像word软件编辑的文档不是文本文件。

  • 二进制文件

二进制文件把数据内容用“字节”进行存储,无法用记事本打开。必须使用专用的软件解码。常见的有:MP4视频文件、MP3音频文件、JPG图片、doc文档等等。

2. 创建文件对象 open()

  • open()函数用于创建文件对象,基本语法格式如下:

​ open(文件名,打开方式)

  • 打开方式中,如果没有增加模式“b”,则默认创建的是文本文件对象,处理的基本单元是“字符”。如果是二进制模式“b”,则创建的是二进制文件对象,处理的基本单元是“字节”。

3. 文本文件的写入

  • 三个步骤

1)创建文件对象

2)写入数据

  1. 关闭文件对象

3.1 write()/writelines()写入数据

  • write(a): 把字符串a写入文件中

  • writelines(b): 把字符串列表写入文件中,不添加换行符

f = open('test.txt','w',encoding='utf-8')
s = ['alex\n','john\n','peter\n','皓']
f.writelines(s)
f.close()

3.2 with语句

不论什么原因跳出with块,都能确保文件正确的关闭,并且可以在代码块执行完毕后自动还原进入该代码块时的现场。

s = 'alex\njohn\npeter\n皓'
with open('test.txt','w',encoding='utf-8') as f:
    f.write(s)

4. 文本文件的读取

文件的读取一般使用如下三个方法:

  • read(size)

从文件中读取size,并作为结果返回。如果没有size参数,则读取整个文件。

with open('test.txt','r',encoding='utf-8') as f:
    print(f.read(5))
    print(f.read(3)) ##执行完前一句后,光标停留在第五个字符后面,再次读取的时候从第六个字符开始读
  • readline()
with open('test.txt','r',encoding='utf-8') as f:
    print(f.readline())
    print(f.readline())
# 第一行,f.readline()完成后最后一个字符是 ‘\n’,此时光标已经定位到了下一行的第0个位置
# print函数end默认为换行,因此每打印一行会空一行,相当于输入了两次换行。
  • readlines()
with open('test.txt','r',encoding='utf-8') as f:
    print(f.readlines()) # 一行一行的读取,存放在列表中
    # ['alex\n', 'john\n', 'peter\n', '皓']
Pythonpickle模块是用来实现序列化的,即将Python中的对象转换成字节流,方便存储和传输。pickle模块支持多种协议,其中协议0是最早的版本,协议1和协议2是Pyhton2中引入的,协议3是Python3.0中引入的,协议4是Python3.4中引入的,每个协议都有其特点和适用范围。 下面我们来详细了解一下pickle模块的使用方法和各个协议的特点。 ## 基本用法 pickle模块提供了dumps、dump、loads和load四个函数,分别用来进行序列化和反序列化操作。其中dumps和loads函数可以直接将对象转换成字节流或将字节流转换成对象,而dump和load函数则可以将对象序列化到文件或从文件中反序列化对象。 ### 序列化 将Python对象转换成字节流的过程称为序列化,可以使用dumps函数实现: ```python import pickle data = {'name': 'Tom', 'age': 18, 'gender': 'male'} bytes_data = pickle.dumps(data) print(bytes_data) ``` 输出结果为: ``` b'\x80\x04\x95\x17\x00\x00\x00\x00\x00\x00\x00}\x94(\x8c\x04name\x94\x8c\x03Tom\x94\x8c\x03age\x94K\x12\x8c\x06gender\x94\x8c\x04male\x94u.' ``` 可以看到,data字典被转换成了一串二进制的字节流。 ### 反序列化 将字节流转换成Python对象的过程称为反序列化,可以使用loads函数实现: ```python import pickle bytes_data = b'\x80\x04\x95\x17\x00\x00\x00\x00\x00\x00\x00}\x94(\x8c\x04name\x94\x8c\x03Tom\x94\x8c\x03age\x94K\x12\x8c\x06gender\x94\x8c\x04male\x94u.' data = pickle.loads(bytes_data) print(data) ``` 输出结果为: ``` {'name': 'Tom', 'age': 18, 'gender': 'male'} ``` ### 文件操作 除了使用dumps和loads函数进行序列化和反序列化操作外,pickle模块还提供了dump和load函数用于将对象序列化到文件或从文件中反序列化对象。 将对象序列化到文件: ```python import pickle data = {'name': 'Tom', 'age': 18, 'gender': 'male'} with open('data.pkl', 'wb') as f: pickle.dump(data, f) ``` 从文件中反序列化对象: ```python import pickle with open('data.pkl', 'rb') as f: data = pickle.load(f) print(data) ``` ## 协议0 协议0是最早的版本,它使用ASCII码来表示序列化后的对象,因此序列化后的数据比较大。使用协议0时,可以指定文件打开模式为't',表示以文本模式打开文件: ```python import pickle data = {'name': 'Tom', 'age': 18, 'gender': 'male'} with open('data.pkl', 'wt') as f: pickle.dump(data, f, protocol=0) with open('data.pkl', 'rt') as f: data = pickle.load(f) print(data) ``` 输出结果为: ``` {'age': 18, 'gender': 'male', 'name': 'Tom'} ``` ## 协议1 协议1和协议2是Python2中引入的,它们使用更紧凑的二进制格式表示序列化后的对象。协议1可以指定文件打开模式为'wb',表示以二进制模式打开文件: ```python import pickle data = {'name': 'Tom', 'age': 18, 'gender': 'male'} with open('data.pkl', 'wb') as f: pickle.dump(data, f, protocol=1) with open('data.pkl', 'rb') as f: data = pickle.load(f) print(data) ``` 输出结果为: ``` {'name': 'Tom', 'age': 18, 'gender': 'male'} ``` ## 协议2 协议2是协议1的改进版本,它支持新的对象类型,如集合、字典等。在Python2中,协议2是默认使用的协议,如果不指定协议号,则使用协议2。 在Python3中,pickle模块默认使用协议3,但仍然可以使用协议2: ```python import pickle data = {'name': 'Tom', 'age': 18, 'gender': 'male'} with open('data.pkl', 'wb') as f: pickle.dump(data, f, protocol=2) with open('data.pkl', 'rb') as f: data = pickle.load(f) print(data) ``` 输出结果为: ``` {'name': 'Tom', 'age': 18, 'gender': 'male'} ``` ## 协议3 协议3是Python3.0中引入的,它支持更多的对象类型,如bytes、bytearray、set等。在Python3中,协议3是默认使用的协议,因此可以省略protocol参数: ```python import pickle data = {'name': 'Tom', 'age': 18, 'gender': 'male'} with open('data.pkl', 'wb') as f: pickle.dump(data, f) with open('data.pkl', 'rb') as f: data = pickle.load(f) print(data) ``` 输出结果为: ``` {'name': 'Tom', 'age': 18, 'gender': 'male'} ``` ## 协议4 协议4是Python3.4中引入的,它支持更多的对象类型,如memoryview、tuple等。协议4还支持从流中读取指定长度的数据,从而避免了一次性读取太多数据导致内存溢出的问题。 使用协议4时,需要将文件打开模式指定为'xb',表示以二进制模式打开文件,并且不能使用文本模式: ```python import pickle data = {'name': 'Tom', 'age': 18, 'gender': 'male'} with open('data.pkl', 'xb') as f: pickle.dump(data, f, protocol=4) with open('data.pkl', 'rb') as f: data = pickle.load(f) print(data) ``` 输出结果为: ``` {'name': 'Tom', 'age': 18, 'gender': 'male'} ``` ## 注意事项 在使用pickle模块时,需要注意以下几点: - 序列化和反序列化的对象必须是可序列化的,即不能包含不能序列化的对象。 - 序列化和反序列化的对象必须是相同的类型,否则可能会出现错误。 - 序列化和反序列化的对象必须是可信的,否则可能会被注入恶意代码。 - 不同协议之间的兼容性不同,不同协议之间的序列化和反序列化操作不一定是互逆的。因此,在使用不同协议时,需要注意协议号的兼容性和相应的操作
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值