halcon案例分享

目录

 

测量长度

仿射变换

测量长度和距离

模板匹配

旋转角度

找圆心

BLOB分析

控制变量

机器视觉工程应用的开发思路


测量长度

仿射变换

测量长度和距离

模板匹配

旋转角度

找圆心

BLOB分析

控制变量

机器视觉工程应用的开发思路

机器视觉工程应用主要可划分为硬件和软件两大部分。

硬件:工程应用的第一步就是硬件选型。硬件选型很关键,因为它是你后面工作的基础。主要是光源、工业相机和镜头选择。

软件:目前业内商业库主要有Halcon,康耐视,DALSA,evision,NI(labview+vision模块)等,开源库有OpenCV。


机器视觉工程应用的基本开发思路是:

一、图像采集

二、图像分割

三、形态学处理

四、特征提取

五、输出结果

下面在Halcon下对这四个步骤进行讲解。

一、图像采集:

Halcon通过imageacquisition interfaces对各种图像采集卡及各种工业相机进行支持。其中包括:模拟视频信号,数字视频信号Camera Link,数字视频信号IEEE 1394,数字视频信号USB2.0,数字视频信号Gigabit Ethernet等。 

Halcon通过统一的接口封装上述不同相机的image acquisition interfaces,从而达到算子统一化。不同的相机只需更改几个参数就可变更使用。

Halcon图像获取的思路:

1、打开设备,获得该设备的句柄。

2、调用采集算子,获取图像。

1、打开设备,获得该设备的句柄。

 

open_framegrabber('DahengCAM', 1, 1, 0, 0, 0, 0, 'interlaced', 8, 'gray', -1, 'false','HV-13xx', '1', 1, -1, AcqHandle) //连接相机,并设置相关参数

Parameter

Values

Default

Type

Description

Name

'DahengCAM'

 

string

Name of the HALCON interface.

HorizontalResolution

1

1

 

1表示水平全部,2为水平1/2,表示图像截取。

VerticalResolution

1

1

 

同上,表示垂直方向。

ImageWidth

 

0

integer

所需的图像部分的宽度('0 '代表了完整的图像)。

ImageHeight

 

0

integer

所需的图像部分的高度(0”是完整的图像)

StartRow

 

0

integer

所需的图像部分左上方的像素行坐标

StartColumn

 

0

integer

所需的图像部分左上方的像素列坐标

Field

   

忽视

BitsPerChannel

   

忽视

ColorSpace

'default', 'gray', 'rgb'

'gray'

string

HALCON图像的通道模式

Generic

   

忽视

ExternalTrigger

'false', 'true'

'false'

string

外部触发状态

CameraType

'HV-13xx', 'HV-20xx', 'HV-30xx', 'HV-31xx','HV-50xx', 'SV-xxxx'

'HV-13xx'

string

所连接的摄像机系列型。

Device

'1', '2', '3', ...

'1'

string

相机连接第一个设备号“1”,第二个设备编号“2”。

Port

   

忽视

LineIn

   

忽视

2、调用采集算子,获取图像。

grab_image (Image, AcqHandle) //(同步采集)完后处理图像,然后再采集图像。采集图像的速率受处理速度影响。

grab_image_async (Image, AcqHandle,MaxDelay) //(异步采集),一幅画面采集完后相机马上采集下一幅画面,不受处理速度影响。其中第三个参数为:MaxDelay,表示异步采集时可以允许的最大延时,本次采集命令距上次采集命令的时间不能超出MaxDelay,超出即重新采集。

图像采集其他相关算子:

grab_image_start,该算子开始命令相机进行异步采集。只能与grab_image_async(异步采集)一起使用。

例子:

* Select a suitable image acquisition interface nameAcqName

open_framegrabber(AcqName,1,1,0,0,0,0,'default',-1,'default',-1.0,\

'default','default','default',-1,-1,AcqHandle)

grab_image(Image1,AcqHandle)//进行同步采集

* Start next grab

grab_image_start(AcqHandle,-1.0)//命令相机进行异步图像采集开始

* Process Image1 ...

* Finish asynchronous grab + start next grab

grab_image_async(Image2,AcqHandle,-1.0)//读取异步采集的图像

* Process Image2 ...

close_framegrabber(AcqHandle)

3、相机参数读写

读取相机参数:

info_framegrabber( : : Name, Query : Information, ValueList)

写相机参数:

set_framegrabber_param( : : AcqHandle, Param, Value : )

 

二、图像分割:

图像分割的定义: 

所谓图像分割是指将图像中具有特殊含义的不同区域分割开来,这些区域是互相不交叉的,每个区域都满足特定区域的一致性。

1、基于阈值的图像分割

threshold —采用全局阈值分割图像。

格式:    threshold(Image : Region : MinGray, MaxGray : )

自动全局阈值分割的方法:

(1)计算灰度直方图 

(2)寻找出现频率最多的灰度值(最大值) 

(3)在threshold中使用与最大值有一定距离的值作为阈值

代码:

gray_histo(Regions, Image,AbsoluteHisto, RelativeHisto) //计算出图像区域内的绝对和相对灰度值直方图。

PeakGray := sort_index(AbsoluteHisto)[255] //求出出现频率最多的灰度值

threshold(Image,Region,0,PeakGray-25)

bin_threshold — 使用一个自动确定的阈值分割图像。

格式:    bin_threshold(Image : Region : : )

 

dyn_threshold —使用一个局部阈值分割图像。

格式:    dyn_threshold(OrigImage, ThresholdImage : RegionDynThresh : Offset, LightDark : )

例子:

mean_image(Image,Mean,21,21)

dyn_threshold(Image,Mean, RegionDynThresh,15,'dark')

var_threshold —阈值图像局部均值和标准差的分析。

格式:    var_threshold(Image : Region : MaskWidth, MaskHeight, StdDevScale, AbsThreshold, LightDark : ) 

 

2、基于边缘的图像分割:寻找区域之间的边界

watersheds —从图像中提取分水岭和盆地。

格式:    watersheds(Image : Basins, Watersheds : : )

watersheds_threshold —使用阈值从图像中提取分水岭和盆地。

格式:    watersheds_threshold(Image : Basins : Threshold : )

 

3、基于区域的图像分割:直接创建区域

 

三、形态学处理

形态学处理以集合运算为基础。

腐蚀、膨胀、开操作、闭操作是所有形态学图像处理的基础。

开操作(先腐蚀再膨胀)使对象的轮廓变得光滑,断开狭窄的间断和消除细的突出物。

闭操作(先膨胀再腐蚀)消弥狭窄的间断和长细的鸿沟,消除小的孔洞,填补轮廓线的断裂。

形体学基础算子:

erosion1 

dilation1 

opening 

closing

常用的形态学相关算子 

connection 

select_shape 

opening_circle 

closing_circle 

opening_rectangle1 

closing_rectangle1 

complement 

difference 

intersection 

union1 

shaps_trans 

fill_up

形态学高级算子: 

boundary 

skeleton

 

四、特征提取:

1、区域特征:

area 

moments

smallest_rectangle1

smallest_circle

convexity:区域面积与凸包面积的比例

contlength:区域边界的长度

compactness

2、灰度特征

estimate_noise

select_gray

 

五、输出结果:

(1)获取满足条件的区域

(2)区域分类,比如OCR

(3)测量

(4)质量检测

来源:https://www.cnblogs.com/hanzhaoxin/archive/2013/02/15/2912879.html 

001:计算机视觉领域研究资源及期刊、会议介绍

002:德国kuka机器人与世界冠军乒乓对决

003:120图勾勒全球AI产业完整图谱!

004:Facebook 开源计算机视觉系统,从像素水平理解图像(附论文及代码)

005:想成为机器学习工程师?这份自学指南你值得收藏

006:十一种通用滤波算法

007:图像处理与计算机视觉基础,经典以及最近发展

008:机器人行业深度报告(完整版)

009:从洗衣妹到谷歌首席科学家,她靠孤独改变了人工智能界!

010:工业级机器视觉行业研究报告

011:双远心工业镜头的原理简述

012:如何装备一个学术型的 iPad ?

013:机器视觉系统概述

014:德国工匠:我们没有“物美价廉”的东西

015:为什么最好的机械臂是7个自由度,而不是6个?

016:史上最给力的技术视频!

017:机器人10大流行编程语言对比,你掌握了哪种?

018:新奇复杂机械原理图!

019:机器人控制系统相关知识大汇集

020:机器人的工作原理,史上最详细的解析!

021:光源选型知识点

022:这才是机械手,这才是自动化,你那算什么?

023:摄像机和镜头的基础知识

024:物联网产业链全景图(附另13大电子行业全景图,必收藏)

025:日本到底强大到什么地步?让人窒息!看后一夜未眠

026:德国机械用行动惊艳全世界:无敌是多么寂寞

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Ai智享

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值