Opencv暑期历程--Day10(6种肤色检测方法,YCrCb肤色模型解释,再理解一遍掩模)

本文介绍了6种肤色检测方法,包括基于RGB的颜色模型、椭圆皮肤模型、YCrCb颜色空间结合Otsu法、YCrCb颜色空间Cr/Cb范围筛选、HSV颜色空间筛选以及OpenCV的AdaptiveSkinDetector类。重点讨论了YCrCb颜色空间在肤色检测中的应用,如Cr分量与Otsu阈值分割,以及肤色检测的椭圆模型。此外,文章还解析了Otsu算法的原理和YCrCb与RGB的转换公式。
摘要由CSDN通过智能技术生成

从一篇文章了解到,肤色检测主要有以下七种方法:

  1. RGB color space
  2. Ycrcb之cr分量+otsu阈值化
  3. YCrCb中133<=Cr<=173 77<=Cb<=127
  4. HSV中 7<H<20 28<S<256 50<V<256
  5. 基于椭圆皮肤模型的皮肤检测
  6. opencv自带肤色检测类AdaptiveSkinDetector

不过经作者自己检验,用RGB的方法受光线影响比较大,鲁棒性太低了,所以我们这次就不实验它了,留下一个判别式就好。

第三种也不好用,

方法一:基于RGB的皮肤检测

根据RGB颜色模型找出定义好的肤色范围内的像素点,范围外的像素点设为黑色。

查阅资料后可以知道,前人做了大量研究,肤色在RGB模型下的范围基本满足以下约束:

在均匀光照下应满足以下判别式:

R>95 AND G>40 B>20 AND MAX(R,G,B)-MIN(R,G,B)>15 AND ABS(R-G)>15 AND R>G AND R>B

在侧光拍摄环境下:

R>220 AND G>210 AND B>170 AND ABS(R-G)<=15 AND R>B AND G>B

方法二:基于椭圆皮肤模型的皮肤检测

经过前人学者大量的皮肤统计信息可以知道,如果将皮肤信息映射到YCrCb空间,则在CrCb二维空间中这些皮肤像素点近似成一个椭圆分布。因此如果我们得到了一个CrCb的椭圆,下次来一个坐标(Cr, Cb)我们只需判断它是否在椭圆内(包括边界),如果是,则可以判断其为皮肤,否则就是非皮肤像素点。

看看这个YCrCb是个啥:

肤色YCbCr颜色空间是一种常用的肤色检测的色彩模型,其中Y代表亮度,Cr代表光源中的红色分量,Cb代表光源中的蓝色分量。人的肤色在外观上的差异是由色度引起的,不同人的肤色分布集中在较小的区域内。肤色的YCbCr颜色空间CbCr平面分布在近似的椭圆区域内,通过判断当前像素点的CbCr是否落在肤色分布的椭圆区域内,就可以很容易地确认当前像素点是否属于肤色。将图像转换到YCbCr空间并且在CbCr平面进行投影,可以采集到肤色的样本点。

将CbCr平面均分为许多小区域,将每个区域的中心点CbCr色度值作为当前区域的特征值,对肤色区域像素值进行遍历,如果当前像素值落在该区域内则替换当前区域特征值。

这么一看,和HSV模型有点像哈。

3、YUV和RGB互相转换的公式如下(RGB取值范围均为0-255)︰
 Y = 0.299R + 0.587G + 0.114B
 U = -0.147R - 0.289G + 0.436B
 V = 0.615R - 0.515G - 0.100B
 R = Y + 1.14V
 G = Y - 0.39U - 0.58V
 B = Y + 2.03U

大概知道了,YUV(YCrCb)就是一个单独把亮度分离开来的颜色模型,使用这个颜色模型的话,像肤色不会受到光线亮度而发生

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值