Annealing-based Label-Transfer Learning for Open World Object Detection(论文解析)

Annealing-based Label-Transfer Learning for Open World Object Detection

摘要

“开放世界目标检测(Open World Object Detection,OWOD)因其在现实世界中的实用性而引起了广泛关注。以往的OWOD研究通常采用手动设计未知发现策略来从背景中选择未知提议,但由于缺乏适当的先验知识,存在不确定性。在本文中,我们提出目标检测可以被看作是一个目标级特征纠缠过程,其中未知特征通过卷积操作传播到已知提议,可以被提炼以增强未知目标的识别,而无需手动选择。因此,我们提出了一种简单而有效的基于退火的标签传递框架,充分探索已知提议以减轻不确定性。具体来说,引入了标签传递学习范式来解耦已知和未知特征,同时进一步采用锯齿退火调度策略来重建已知和未知类别的决策边界,从而促进已知和未知目标的识别。此外,以往的OWOD研究忽视了已知和未知性能之间的权衡,因此我们引入了一个称为"Equilibrium Index"的度量来全面评估OWOD模型的有效性。据我们所知,这是第一个不需要手动选择未知目标的OWOD工作。我们在常用基准数据集上进行了大量实验证明,与其他最新方法相比,我们的模型实现了卓越的检测性能(未知目标平均精度提高了200%,已知目标检测性能更高)。我们的代码可以在https://github.com/DIG-Beihang/ALLOW.git上找到。”

2 相关工作

深度学习的发展[3, 5, 9, 13, 15, 21, 22, 24, 47]推动了多个对象在图像内进行识别和定位的目标检测研究。传统的目标检测模型基于一个理想的封闭世界假设,这意味着要检测的类别必须在训练阶段进行标记和给定。然而,很可能会出现目标检测系统在训练阶段未出现的未知对象。为了解决这个问题,先前的方法已经探索了开放集和开放世界的设置。

开放集分类和检测
在开放集设置中,通过训练集获得的知识是不完整的,因此在推理过程中分类器可能会遇到在训练集中没有出现过的类别。为了应对这一挑战,一些研究[8, 14, 18, 29, 33, 36]在一些假设下探索了这个任务。开放集分类问题首次在[31]中被定义为一个受限制的最小化问题,并在后续研究中扩展为多类分类器[16, 32]。Bendale和Boult [2]提出了一种方法,用于在模型的特征空间中识别未知类别,并使用OpenMax分类器来估计整体风险。Liu等人[23]开发了一个度量学习框架,通过长尾识别设置来将不可见类别标识为未知类别,以处理类别共存情况。PROSER [46]鼓励区分已知和未知类别,但忽略了已知和未知实例之间的动态平衡。此外,自监督学习[28]和重建的无监督学习方法[43]已被用于开放集中的识别问题。

Dhamija等人[4]研究了开放集目标检测任务,并提出了开放集目标检测协议。随后的研究[11, 26, 27]通过测量不确定性来提高检测性能。OpenDet [12]也从特征密度的角度学习已知提议,但它手动设计了一个未知发现策略,选择了一些高不确定性的已知提议来帮助改善未知目标的识别。

开放世界分类和检测
不同于仅关注未知类别识别的开放集任务,开放世界任务还会基于新获得的类别数据进行增量学习。Bendale等人[1]提出了第一个开放世界图像识别模型,并提出了一种用于评估开放世界识别系统的协议。Xu等人提出了一种元学习方法[41],用于将新样本与已知类别的动态集合进行匹配,并在新样本与所有已知类别的相似性较低时将其识别为未知类别。一些最近的研究[25, 25, 38]尝试分别使用长尾分布[44]、少样本学习[37]和零样本学习[40]来应对开放世界分类问题,以探索更复杂的场景。

对于开放世界检测,Joseph等人[17]提出了ORE方法,其中设计了一个未知对象感知的RPN(Region Proposal Network),赋予模型检测未知对象的能力。SA方法[42]利用语义拓扑,为每个类别在特征空间中定义一个语义质心,并在学习过程中将物体实例靠近它们所属的质心。OWDETR [10]提出了一个端到端的框架,包括伪标签、新颖性分类和目标评分。Wu等人[39]定义了未知分类开放世界目标检测(Unknown-Classified OWOD)问题,并设计了一个基于相似性和聚类的两阶段检测器,用于区分多个不同的未知类别。Zhao等人[45]进一步提出了一个辅助提案顾问和一个类别特定的排除分类器,以改善未知目标检测性能。

先前的方法[10, 17, 39, 42, 45]通常采用复杂的未知发现策略来处理未知目标检测问题,但并不总能准确选择未知提议,因此引入了过多的不确定性,损害了对未知目标的学习并影响了已知分类。相比之下,我们的方法只通过一个合理的解耦过程从已知提议中探索未知信息,这在提高未知目标检测性能的同时保持了已知目标检测性能。

未完待续。。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
sa-pso多目标优化代码,可以基于Simulated Annealing(模拟退火)和Particle Swarm Optimization(粒子群优化)两种算法相结合的思想进行编写。 首先,我们需要定义问题的目标函数。多目标优化问题是指在有多个决策变量的情况下,存在多个决策变量组合可以实现多个不同的优化目标。在代码中,我们需要定义这些目标函数,并考虑其权重或约束条件。 然后,我们可以使用Simulated Annealing算法来进行全局搜索和探索。Simulated Annealing通过模拟金属退火的过程,按照一定的温度下降规则,在解空间中进行随机搜索,以找到全局最优解。算法的核心是接受次优解的概率,该概率随着温度的下降而逐渐降低,从而避免陷入局部最优解。 接着,我们可以使用Particle Swarm Optimization算法来进行局部搜索和优化。Particle Swarm Optimization通过模拟鸟群觅食的过程,将问题的解空间视为粒子的位置,通过粒子之间的信息交流和迭代,逐渐靠近最优解。算法的核心是更新粒子的速度和位置,使其在解空间中搜索最优解。 在代码中,我们可以使用两个循环:外部循环用于控制Simulated Annealing算法的退火过程,内部循环用于控制Particle Swarm Optimization算法的迭代过程。通过不断更新解的位置和速度,并根据目标函数进行评估和比较,最终得到多目标优化的最优解。 对于粒子群算法,我们要定义粒子的初始位置和速度,并通过更新公式来迭代更新粒子的速度和位置。对于模拟退火算法,我们要定义初始温度和温度下降的规则,并通过接受次优解的概率来接受或拒绝新解。 最后,我们可以根据代码的输出结果和特定问题的要求,进行结果的分析和优化。可以根据目标函数的值或约束条件的满足程度,对算法进行调整和改进,以得到更好的优化结果。 总之,sa-pso多目标优化代码基于Simulated Annealing和Particle Swarm Optimization算法,通过全局搜索和局部搜索的方式,在解空间中逐步靠近最优解。通过定义目标函数、更新粒子和温度,进行迭代和优化,最终得到多目标优化的最优解。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

黄阳老师

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值