Out-of-Distribution Detection with Reconstruction Error and Typicality-based Penalty

本文提出了一种新的分布之外(OOD)检测方法,名为惩罚重构误差(PRE),以解决深度神经网络在高维度下检测异常输入的挑战。通过结合归一化流(NF)的重构误差和基于典型性的惩罚,PRE能有效地检测OOD及对抗性示例,提高了检测性能。实验证明,PRE在CIFAR-10、TinyImageNet和ILSVRC2012等数据集上表现出高检测效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Out-of-Distribution Detection with Reconstruction Error and Typicality-based Penalty

摘要

对于实现现实应用的安全可靠运行,进行分布之外(OOD)的检测任务至关重要。在高维度下基于似然性的检测失败被展示出来后,基于典型集的方法引起了人们的关注;然而,它们仍未达到令人满意的性能。我们首先提出了典型性方法的失败案例,然后提出了一种新的基于重构误差的方法,该方法采用了归一化流(NF)。我们进一步引入了基于典型性的惩罚,并将其纳入NF的重构误差中,我们提出了一种新的OOD检测方法,即惩罚重构误差(PRE)。由于PRE检测了偏离输入分布流形的测试输入,因此它有效地检测了对抗性示例以及OOD示例。我们通过使用自然图像数据集(CIFAR-10,TinyImageNet和ILSVRC2012)进行评估来展示我们的方法的有效性。

引言

最近的研究表明,深度神经网络(DNN)模型在测试时输入数据与训练数据显著不同[1, 2, 3, 4, 5, 6]或者被敌对构造[7, 8, 9]时,往往会以高置信度做出错误的预测。这种异常输入通常被称为分布之外(OOD)。我们将期望的数据(包括训练数据)所来自的分布称为分布内(In-Dist),将我们应该检测的意外数据所来自的分布称为OOD。我们处理OOD检测[1, 3, 10, 11],试图区分测试时的输入是否来自In-Dist。

早些时候,[12]引入了基于似然性的方法:使用在训练数据上学习的密度估计模型,将低似然性的数据点检测为OOD。然而,最近使用深度生成模型(DGMs)的实验表明,基于似然性的方法在高维度上经常失败[10, 13]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

黄阳老师

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值