Out-of-distribution Detection系列专栏(七)

目录

前言

Improving reconstruction autoencoder out-of-distribution detection with mahalanobis distance

Motivation

Approach

Experiments

Discussion


前言

本期专栏介绍的文章是一篇相对比较容易的方法,可以很方便的复现。在上一期中,我们介绍了一种在特征层基于马氏距离的判别器,这次我们要将的方法仍然是基于马氏距离来做的,作者使用了一个在Max-Softmax中提出来的经验:联合训练一个自编码器,该编码器在重构ID数据时,误差较小,而重构OOD数据时,会有比较大的误差。另外,OOD领域的相关文章题目实在是又长又直白,这就是所谓的谜底就在谜面上了估计。

Improving reconstruction autoencoder out-of-distribution detection with mahalanobis distance

论文链接:https://arxiv.org/pdf/1812.02765.pdf

在之前的文章中,有人用马氏距离做OOD检测,也有人用重构损失做OOD检测,都取得了不错的效果。在本篇文章中,作者联合使用马氏距离和自编码器的重构损失来构造置信度得分,取得了不错的效果。然而,文章中仅给出了在MNIST数据集上的结果,缺少一定的说服力。

Motivation

在之前的文章中提到过一种范式或者方法,就是在ID数据集上训练一个AutoEncoder,使得对ID数据的重构损失尽可能小。在实际使用时,由于AutoEncoder仅在ID数据上训练过,所以重构损失较小的图像更有可能是ID数据,而重构损失较大的数据则很可能是OOD数据。

然而,本文的作者发现,对于模式较为固定的数据集,例如MNIST和Fashion-MNIST等,这种经验是成立的,但是对于一些真实图像,ID数据的重构损失和OOD数据的重构损失有时差异并不那么明显,因此需要结合使用其他特征来增强OOD检测的鲁棒性。在文章中,作者联合使用了decoder的重构损失以及数据经encoder编码后在特征空间的马氏距离。

Approach

我们用ED分别表示编码器encoder与解码器decoder。输入图像为x,经过encoder编码之后,得到特征向量,或者叫做隐空间向量。这个特征向量经过decoder恢复之后,得到重构图像\hat{x},在训练的时候,我们最小化输入图像x与重构图像\hat{x}之间的像素值差异。在上面的叙述中,隐空间向量v可以表示为:

v=E(x)

经过decoder重构的图像可以表示为:

\hat{x}=D(v)=D(E(x))

训练好自编码器之后,对于一个输入样本,我们可以获得的有重构损失以及隐空间向量,重构损失表示如下:

l(x,D(E(x)))

为了增加鲁棒性,作者在隐空间计算了马氏距离,计算马氏距离需要先获得所有训练样本的特征均值\hat{\mu}与协方差矩阵\hat{\Sigma},根据这些中间量,可以得到特征向量v在隐空间到ID数据分布的马氏距离:

D_M(v)=\sqrt{(v-\hat{\mu})^T\hat{\Sigma}^{-1}(x-\hat{\mu})}

利用马氏距离和重构损失,可以得到数据来自OOD的置信度:

\textup{novelty}(x)=\alpha\cdot D_M(E(x))+\beta\cdot l(x.D(E(x)))

上述的novelty数值越大,说明数据越有可能来自于OOD数据分布。取novelty的相反数可以与真实标签计算AUROC以及AUPR等指标。

Experiments

首先,作者展示了,OOD数据到ID数据分布的马氏距离以及自身的重构误差都是较大的,在下图左侧可以看出,也就是蓝色点,无论是重构损失还是到训练数据隐空间分布的马氏距离都是大于绿色点,也就是ID数据点的,这证明了作者使用马氏距离和重构损失结合的方法是有统计规律支撑的。

 上图中的右侧展示了联合使用马氏距离和重构损失要好于单独使用两者中的任何一个。最后,作者给出了使用MNIST中某一类作为ID,另一类作为OOD的评测结果:

从上面的表格中可以看出,使用Hybrid要好于单独使用Reconstruction Err。虽然上面的指标都不错,但是实验内容较小,没有在其他数据集做进一步验证。

Discussion

这里我们需要指出基于AutoEncoder方法的一个瓶颈:那就是不适用于大尺寸数据。对于自然场景图像,例如ImageNet,数据的尺寸是比较大的,场景是比较复杂的,这时候训练自编码器是比较困难的一件事,并且,重构损失也显得不那么具有倾向性。另外,当特征维度很高时,计算马氏距离将会面临维度灾难(Curse of Dimensionality)的问题。因此,有时候,看似简单的方法,其实在实现的时候要考虑的问题往往是更多的。

  • 4
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
### 回答1: Out-of-distribution是指在模型训练时未曾出现过的数据分布,也称为“未知数据”。在模型面对未知数据时,其预测结果可能会出现误差或不确定性。因此,对于模型的鲁棒性和泛化能力的提升,需要对out-of-distribution数据进行有效的识别和处理。 ### 回答2: out-of-distributionOoD)是指模型在测试阶段遇到了其训练数据集之外的样本或类别。当模型只使用特定的数据集进行训练时,它可能无法处理那些与训练数据不同的输入。这些新的样本可能是在颜色、形状、大小等方面与训练数据有所不同,也可能属于未在训练数据中出现过的类别。 遇到OoD样本的问题是模型的泛化能力不足。模型在训练数据中表示和学习的特征可能过于特定,无法推广到训练数据集之外的样本。这可能导致模型的预测不准确或不可靠。 为了解决OoD问题,有几种方法可以采取。一种常见的方法是收集更多来自OoD分布的样本,并将其添加到训练数据中,以使模型能够更好地学习如何处理这些新样本。另一种方法是使用一些先验知识或规则,对OoD样本进行检测和筛选,以避免对其进行错误预测。 同时,一些研究者提出了一些用于检测OoD样本的新颖性评估方法。这些方法通过利用模型在训练样本和OoD样本上的输出差异来判断一个样本是否属于OoD类别。这种方法可以帮助我们识别OoD样本,并采取相应的措施,以提高模型的泛化性能。 综上所述,解决out-of-distribution问题是训练一个具有较强泛化能力的模型的重要步骤。只有当模型能够有效处理新的样本和未见过的类别时,才能提高模型的可靠性和适用性。 ### 回答3: "out-of-distribution"是指数据集中没有包含的数据样本或样本类别。在机器学习深度学习中,数据集通常用于训练和测试模型的性能。然而,在现实世界中,我们会遇到无法准确分类的新数据,这些数据就属于"out-of-distribution"。这可能是因为这些数据具有与训练数据不同的特征,或者因为数据集的覆盖范围有限。 "out-of-distribution"的出现可能会对模型的性能和鲁棒性产生负面影响。由于模型没有前面没有见过这些类型的数据,它可能会对其进行错误的分类或给出不确定的预测结果。这种情况在实际应用中特别重要,因为我们希望模型能够在各种不同的情况下表现得可靠和准确。 为了解决"out-of-distribution"问题,一种常见的方法是通过收集更多具有代表性的训练数据来增加数据集的覆盖范围。这样模型可以更好地学习不同类型的数据特征,并提高对"out-of-distribution"数据的泛化能力。另外,使用先进的模型架构和优化算法也可以增强模型的鲁棒性。 除了增加训练数据和改进模型架构外,还可以使用一些检测方法来识别"out-of-distribution"的样本。这些方法可以根据模型的置信度、预测熵或数据分布等特征来判断样本是否属于训练集之外的数据。这些方法可以帮助我们发现并处理那些可能造成模型失效的"out-of-distribution"数据。 总之,"out-of-distribution"是指在训练数据之外的数据样本或样本类别。对于机器学习深度学习任务,了解和解决"out-of-distribution"问题是提高模型性能和鲁棒性的关键。通过增加训练数据、改进模型架构和使用检测方法,我们可以减少"out-of-distribution"带来的负面影响。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值