训练人脸识别常见问题

在人脸识别训练中,面临大量数据的挑战。采用预训练模型能加速收敛;预训练模型建议在CPU上加载,避免GPU资源占用;使用SGD优化器,多步学习率策略在lr=10^-3和lr=10^-4时效果显著,epoch可适当增加。当loss稳定后,应及时降低学习率以进一步优化模型。
摘要由CSDN通过智能技术生成

人脸识别训练难点:数据量大(类别通常都是上十万,上百万)

训练当中常见注意要点:

1.尽管训练样本量大,但是任然需要使用预训练模型,目的是加速模型收敛;

2.加载预训练模型时,最好加载在cpu上,加载在gpu上,模型参数会占显卡;

checkpoint = torch.load(args.BACKBONE_RESUME_ROOT, map_location=torch.device('cpu'))

3.优化器SGD,策略使用“多步”变化时,一般在lr=10-3和lr=10-4时,loss下降最多,所以处于这两个lr的时候,epoch可以设置大一些(我在蒸馏的时候设置的是epoch=20,其实差不多在17的位置loss已经不怎么发生改变了),所以在训练过程中,在观察到loss不发生变化后,就准备降低学习率,达到降loss的目的;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

猫猫与橙子

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值