TensorRT5中的yoloV3加速

之前做过caffe版本的yolov3加速,然后实际运用到项目上后,发现原始模型在TX2(使用TensorRT加速后,FP16)上运行260ms,进行L1 排序剪枝后原始模型由246.3M压缩到64.8M,但是时间运行只提速到了142ms(目标是提速到100ms以内),很是捉急。

最近发现TensorRT5的sampleszhong有yolov3 onnx版本的TensorRT加速(虽然是python版本的),所以准备阅读TensorRT的原始demo作为再加速的依据,看完后发现和C++版本没有什么区别;

 

遇到的bug:

1)[libprotobuf ERROR google/protobuf/io/zero_copy_stream_impl_lite.cc:173] Cannot allocate buffer larger than kint32max for StringOutputStream.

这个问题是protobuf的自身的bug,解决这个问题只需要将使用的protobuf升级就可以了,可以在pycharm中查看使用的protobuf版本:

查看红框标注的protobuf的版本,双击“3.6.1”的位置,就可以指定相应的版本安装,报错之前protobuf的版本是3.0版本,已经升级为当前最新的版本3.6.1.然后成功解决错误;

参考:https://github.com/tensorflow/tensorflow/issues/9337,其中重要的话摘录如下:

Basically, graph is too big. This is not a bug in tensorflow itself, I would 
suggest you ask on stackoverflow for ways to reduce the graph size.

不过话说回来,这个问题产生于protobuf,但回答的人都与tensorflow相关(不过由此联想是protobuf版本要升级);

2)初次使用python API在tensorRT上加速,遇到bug:ImportError: No module named tensorrt

解决方法:

 sudo pip install TensorRT-4.0.1.6/python/tensorrt-4.0.1.6-cp27-cp27mu-linux_x86_64.whl

参考:https://github.com/NVIDIA-AI-IOT/tf_to_trt_image_classification

3)遇到bug:ImportError: libnvinfer.so.5: cannot open shared object file: No such file or directory

sudo cp TensorRT-5.XXX/targets/x86_64-linux-gnu/lib/lib* /usr/lib/

参考:https://devtalk.nvidia.com/default/topic/1036527/?comment=5276008

评论 24
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

猫猫与橙子

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值