Model selection, 模型评价之AIC, AIC(c), BIC

AIC是BIC中,当训练数据的元素个数T=e2,即log(T)=2时的特殊情况,即BIC是在AIC的基础上考虑了数据个数的广义表达式;AICc也是考虑了数据个数的广义表达式。

所以当训练模型所用的数据个数相同时,三种准则对不同模型的优选结果相同,只是相对数值会有不同;当不需要使用结果数值来加权,只是对模型排序优选时,用任一种准则都是与其他准则等价的。

当训练数据个数不等,例如比较周序列和日序列的同一种模型时,用BIC和AICc更好些,因为考虑数据个数的准则优选出的模型更可能避免过拟合,更适合于比较那些需要更多数据的多参数模型,例如基于树的集成类模型和神经网络等。

在这里插入图片描述
参考文献:
https://otexts.com/fpp2/selecting-predictors.html#selecting-predictors
https://otexts.com/fpp2/estimation-and-model-selection.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

山高月小 水落石出

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值