OpenPose快速安装与入门指南:轻松搞定姿态识别【openpose】【含软件资源】

在这篇博客中,我将分享如何快速部署OpenPose,一个开源的实时多人姿态估计库。借助集合版OpenPose,我们将避免繁琐的安装过程,包括models、3rdparty等依赖包。我将详细介绍安装过程、配置虚拟环境,以及如何运行OpenPose的CPU和GPU版本。

0. 下载OpenPose集合版

首先,从下面的链接下载OpenPose的集合版本。这个版本已经包含了所有必要的依赖包,简化了安装过程。

链接: https://pan.baidu.com/s/1-ItZ8_HtQNh3DTnFuc86CA?pwd=ux58 提取码: ux58 复制这段内容后打开百度网盘手机App,操作更方便哦

配件详细信息
操作系统Microsoft Windows 11家庭中文版64位
Python 版本Python 3.8.3
处理器AMD Ryzen 7 5800H with Radeon Graphics 八核
主板联想 LNVNB161216 ( 3840 )
内存16GB DDR4 3200MHz ( 8GB + 8GB )
显卡NVIDIA GeForce RTX 3060 Laptop GPU ( 6GB / 联想 )

OpenPose下载说明

1. 先尝试运行CPU版本

  1. 直接运行build_CPU/examples/tutorial_api_python/01_body_from_image.py。我使用PyCharm进行运行。

  2. 确保Python版本为3.7,避免版本兼容性问题。如果遇到错误,请参考错误消息进行问题定位或查看OpenPose的GitHub issues页面。 Python版本错误示例

    如果遇到No module named 'pyopenpose'错误,请考虑使用虚拟环境。

  3. 创建并激活虚拟环境(以Conda为例):

    conda create --name openpose python=3.7
    conda activate openpose
    
  4. 在PyCharm中切换虚拟环境

    • 打开File -> Settings
      外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

    • 选择Project: openpose-prosperity -> Python Interpreter -> Add
      在这里插入图片描述在这里插入图片描述

    • 选择Conda Environment,并选择刚创建的虚拟环境。
      在这里插入图片描述

1.1 安装OpenCV依赖

为了避免安装过程中的网络问题,推荐使用清华大学镜像站点安装OpenCV:

pip install -i https://pypi.tuna.tsinghua.edu.cn/simple opencv-python

在这里插入图片描述

1.2 运行示例

体验OpenPose实时姿态估计的魅力。尝试不同的输入图片或视频,了解OpenPose的广泛应用。

请添加图片描述

2. 运行GPU版本

运行GPU版本的步骤与CPU版本相同,运行GPU版本步骤与CPU相同,只是需要运行位于build_GPU/examples/tutorial_api_python/01_body_from_image.py的脚本。

但确保已正确安装CUDA Toolkit和cuDNN,并检查版本兼容性。

  • CUDA Toolkit 提供了开发GPU加速应用的综合开发环境和工具。OpenPose利用CUDA进行深度学习模型的并行计算,大幅度提升性能。
  • cuDNN 是针对深度神经网络的GPU加速库,优化了前向传播和反向传播的计算,提高了在NVIDIA GPU上运行的效率。

CUDA Toolkit Archive | NVIDIA Developer【历史版本】
cuDNN 历史版本 | NVIDIA 开发者

请添加图片描述

小贴士

  • 环境配置:确保CUDA和cuDNN配置正确,这对于运行GPU版本至关重要。

  • 性能优化:在GPU版本中,适当调整batch size和模型大小可以优化性能和准确度的平衡。

  • 兼容性问题:如果在安装或运行过程中遇到任何兼容性问题,请检查你的Python版本和依赖库版本,确保它们与OpenPose的要求相匹配。

  • 资源管理:在运行OpenPose特别是GPU版本时,请监控你的系统资源使用情况,以避免因资源耗尽导致的程序崩溃或性能下降。

  • 学习资源:探索OpenPose的GitHub页面和官方文档,可以帮助你更深入地理解其工作原理和高级特性。

结语

通过本篇博客,我们介绍了如何通过下载集合版快速安装OpenPose,以及如何配置和运行OpenPose的CPU和GPU版本。希望这篇文章能帮助你顺利开始使用OpenPose进行姿态估计项目。

无论你是在研究人体姿态估计、开发交互式应用,还是简单地对计算机视觉技术感兴趣,OpenPose都是一个强大的工具,值得你深入学习和探索。

如果你需要在已安装Python 3.8的情况下切换到Python 3.7,你可以使用多个不同版本Python环境管理的方法。以下是几种常见的解决方案:

1. 使用pyenv

pyenv是一个流行的版本管理工具,它允许你在同一台机器上安装和管理多个Python版本。

  • 安装pyenv: 根据你的操作系统,安装方法会有所不同。在Unix-like系统中,通常可以使用git或包管理器安装。
  • 安装Python 3.7: 使用pyenv install 3.7.x命令安装Python 3.7(将x替换为最新的小版本号)。
  • 设置项目Python版本: 在项目目录中运行pyenv local 3.7.x将该目录下的Python版本设置为3.7。

2. 使用conda环境(适合数据科学项目)

如果你是在做数据科学相关的工作,conda是另一个非常好的版本和环境管理工具。它不仅可以管理Python版本,还可以管理库的版本。

  • 安装conda: 安装Anaconda或Miniconda。
  • 创建新环境: 使用conda create --name myenv python=3.7创建一个新环境,这里myenv是你的环境名称。
  • 激活环境: 使用conda activate myenv来激活你刚刚创建的环境。

3. 使用virtualenv

virtualenv是另一个用于创建隔离的Python环境的工具。你可以用它来安装特定版本的Python。

  • 安装virtualenv: 首先确保已安装virtualenv。如果没有安装,可以通过pip install virtualenv安装。
  • 创建虚拟环境: 使用virtualenv -p /usr/bin/python3.7 myenv创建一个新的虚拟环境,其中myenv是环境名称。请确保指定的Python 3.7路径是正确的。
  • 激活环境: 使用source myenv/bin/activate在Unix-like系统上激活环境,或者在Windows上使用myenv\Scripts\activate

每种方法都有其优势,选择哪种取决于你的具体需求和偏好。pyenv更适合需要管理多个Python版本的开发环境。conda非常适合数据科学领域,因为它可以轻松地管理不同库的版本。virtualenv则是一种更轻量级的选择,适合需要快速创建隔离环境的场景。

### OpenPose 安装教程 #### 下载准备环境 对于Windows平台,OpenPose提供了预编译好的CPU和GPU版本。推荐访问官方GitHub页面获取最新发布版[^1]: - 访问地址:<https://github.com/CMU-Perceptual-Computing-Lab/openpose/releases> - 建议选择适合操作系统的稳定版本进行下载。 完成下载之后,需将压缩包解压至指定位置,例如`C:\Program Files\openpose`目录下。 #### CMake配置 为了能够顺利构建项目,需要先安装CMake工具。通过提供的链接可以找到合适的版本并按照指示完成设置[^2]: - 推荐采用图形界面引导的方式简化流程。 - 确认已勾选添加到系统PATH选项以便后续命令行调用。 #### 编译依赖库 针对Linux环境下(如Ubuntu 16.04),除了基本的开发套件外,还需要额外安装一些必要的组件来支持OpenPose运行,比如Protobuf v2.6.1 和 Opencv 3.x系列[^3]: ```bash sudo apt-get update && sudo apt-get install -y build-essential cmake git pkg-config libopencv-dev python-opencv protobuf-serial-dev ``` #### Visual Studio 设置 (仅限 Windows) 当涉及到Visual Studio的选择时,考虑到兼容性和性能优化方面的要求,建议选用VS2015及以上版本,并确保在安装过程中选择了完整的C++工作负载,这一步骤至关重要以避免潜在错误发生[^4]。 #### 构建验证 最后,在一切准备工作就绪后,可以根据README文档中的说明执行具体编译指令;通常情况下是在终端内切换到源码根目录并通过如下方式启动测试程序: ```cmd cd examples/tutorial_api_cpp rd /s/q ..\..\build mkdir ..\..\build & cd ..\..\build cmake .. msbuild ALL_BUILD.vcxproj cd ..\examples\tutorial_api_cpp start "" .\webcam_demo_release.exe ```
评论 27
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值