在这篇博客中,我将分享如何快速部署OpenPose,一个开源的实时多人姿态估计库。借助集合版OpenPose,我们将避免繁琐的安装过程,包括models、3rdparty等依赖包。我将详细介绍安装过程、配置虚拟环境,以及如何运行OpenPose的CPU和GPU版本。
0. 下载OpenPose集合版
首先,从下面的链接下载OpenPose的集合版本。这个版本已经包含了所有必要的依赖包,简化了安装过程。
- 参考链接:尝试一种OpenPose快速安装方法
- 压缩包网盘链接:https://pan.baidu.com/s/11Tu0NmV0w-SQnJ0s80290w 提取码:4fa8
链接: https://pan.baidu.com/s/1-ItZ8_HtQNh3DTnFuc86CA?pwd=ux58 提取码: ux58 复制这段内容后打开百度网盘手机App,操作更方便哦
配件 | 详细信息 |
---|---|
操作系统 | Microsoft Windows 11家庭中文版64位 |
Python 版本 | Python 3.8.3 |
处理器 | AMD Ryzen 7 5800H with Radeon Graphics 八核 |
主板 | 联想 LNVNB161216 ( 3840 ) |
内存 | 16GB DDR4 3200MHz ( 8GB + 8GB ) |
显卡 | NVIDIA GeForce RTX 3060 Laptop GPU ( 6GB / 联想 ) |
1. 先尝试运行CPU版本
-
直接运行
build_CPU/examples/tutorial_api_python/01_body_from_image.py
。我使用PyCharm进行运行。 -
确保Python版本为3.7,避免版本兼容性问题。如果遇到错误,请参考错误消息进行问题定位或查看OpenPose的GitHub issues页面。
如果遇到
No module named 'pyopenpose'
错误,请考虑使用虚拟环境。 -
创建并激活虚拟环境(以Conda为例):
conda create --name openpose python=3.7 conda activate openpose
-
在PyCharm中切换虚拟环境:
-
打开
File
->Settings
。
-
选择
Project: openpose-prosperity
->Python Interpreter
->Add
。
-
选择
Conda Environment
,并选择刚创建的虚拟环境。
-
1.1 安装OpenCV依赖
为了避免安装过程中的网络问题,推荐使用清华大学镜像站点安装OpenCV:
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple opencv-python
1.2 运行示例
体验OpenPose实时姿态估计的魅力。尝试不同的输入图片或视频,了解OpenPose的广泛应用。
2. 运行GPU版本
运行GPU版本的步骤与CPU版本相同,运行GPU版本步骤与CPU相同,只是需要运行位于build_GPU/examples/tutorial_api_python/01_body_from_image.py
的脚本。
但确保已正确安装CUDA Toolkit和cuDNN,并检查版本兼容性。
- CUDA Toolkit 提供了开发GPU加速应用的综合开发环境和工具。OpenPose利用CUDA进行深度学习模型的并行计算,大幅度提升性能。
- cuDNN 是针对
深度神经网络
的GPU加速库,优化了前向传播和反向传播的计算,提高了在NVIDIA GPU上运行的效率。
CUDA Toolkit Archive | NVIDIA Developer【历史版本】
cuDNN 历史版本 | NVIDIA 开发者
小贴士
-
环境配置:确保CUDA和cuDNN配置正确,这对于运行GPU版本至关重要。
-
性能优化:在GPU版本中,适当调整batch size和模型大小可以优化性能和准确度的平衡。
-
兼容性问题:如果在安装或运行过程中遇到任何兼容性问题,请检查你的Python版本和依赖库版本,确保它们与OpenPose的要求相匹配。
-
资源管理:在运行OpenPose特别是GPU版本时,请监控你的系统资源使用情况,以避免因资源耗尽导致的程序崩溃或性能下降。
-
学习资源:探索OpenPose的GitHub页面和官方文档,可以帮助你更深入地理解其工作原理和高级特性。
结语
通过本篇博客,我们介绍了如何通过下载集合版快速安装OpenPose,以及如何配置和运行OpenPose的CPU和GPU版本。希望这篇文章能帮助你顺利开始使用OpenPose进行姿态估计项目。
无论你是在研究人体姿态估计、开发交互式应用,还是简单地对计算机视觉技术感兴趣,OpenPose都是一个强大的工具,值得你深入学习和探索。
如果你需要在已安装Python 3.8的情况下切换到Python 3.7,你可以使用多个不同版本Python环境管理的方法。以下是几种常见的解决方案:
1. 使用
pyenv
pyenv
是一个流行的版本管理工具,它允许你在同一台机器上安装和管理多个Python版本。
- 安装
pyenv
: 根据你的操作系统,安装方法会有所不同。在Unix-like系统中,通常可以使用git
或包管理器安装。- 安装Python 3.7: 使用
pyenv install 3.7.x
命令安装Python 3.7(将x
替换为最新的小版本号)。- 设置项目Python版本: 在项目目录中运行
pyenv local 3.7.x
将该目录下的Python版本设置为3.7。2. 使用
conda
环境(适合数据科学项目)如果你是在做数据科学相关的工作,
conda
是另一个非常好的版本和环境管理工具。它不仅可以管理Python版本,还可以管理库的版本。
- 安装
conda
: 安装Anaconda或Miniconda。- 创建新环境: 使用
conda create --name myenv python=3.7
创建一个新环境,这里myenv
是你的环境名称。- 激活环境: 使用
conda activate myenv
来激活你刚刚创建的环境。3. 使用
virtualenv
virtualenv
是另一个用于创建隔离的Python环境的工具。你可以用它来安装特定版本的Python。
- 安装
virtualenv
: 首先确保已安装virtualenv
。如果没有安装,可以通过pip install virtualenv
安装。- 创建虚拟环境: 使用
virtualenv -p /usr/bin/python3.7 myenv
创建一个新的虚拟环境,其中myenv
是环境名称。请确保指定的Python 3.7路径是正确的。- 激活环境: 使用
source myenv/bin/activate
在Unix-like系统上激活环境,或者在Windows上使用myenv\Scripts\activate
。每种方法都有其优势,选择哪种取决于你的具体需求和偏好。
pyenv
更适合需要管理多个Python版本的开发环境。conda
非常适合数据科学领域,因为它可以轻松地管理不同库的版本。virtualenv
则是一种更轻量级的选择,适合需要快速创建隔离环境的场景。