从零开始理解AdaBoost算法:加法模型与优化方法(三)【理论解析】

从零开始理解AdaBoost算法:加法模型与优化方法(三)【理论解析】

在前面我们已经明白了如何进行AdaBoost算法的基本操作,但我们还不清楚这些公式是如何得来的,以及为什么要这样做。接下来,我们将详细讲解这些公式的推导过程及其背后的原因。

AdaBoost算法属于Boosting类型的算法,其基本思路是通过组合多个弱分类器来构建一个强分类器。由于它是一个加法模型,我们可以通过训练来优化模型中的参数。

预测函数——加法模型的定义

在机器学习中,加法模型的预测函数如下所示:
f ( x ) = ∑ m = 1 M β m b ( x ; γ m ) f(x) = \sum_{m = 1}^{M} \beta_m b(x;\gamma_m) f(x)=m=1Mβmb(x;γm)
这里:

  • β m \beta_m βm 是基函数的系数
  • b ( x ; γ m ) b(x;\gamma_m) b(x;γm) 是基分类器
  • γ m \gamma_m γm 是基分类器的参数

损失函数

损失函数的选择取决于具体问题:

  • 回归问题:均方误差(MSE)
  • 分类问题:指数函数或交叉熵损失

优化方法

常用的优化方法是梯度下降,但是对于加法模型,梯度下降并不总是适用。

梯度下降的缺点

目标函数是要极小化损失函数:
min ⁡ β m , γ m ∑ i = 1 N L ( y i , ∑ m = 1 M β m b ( x i ; γ m ) ) \min_{\beta_m,\gamma_m} \sum_{i = 1}^{N} L(y_i, \sum_{m = 1}^{M} \beta_m b(x_i;\gamma_m)) βm,γmmini=1NL(yi,m=1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值