简化深度学习实验管理:批量训练和自动记录方案
在深度学习模型的训练过程中,经常需要多次运行模型,以测试不同参数组合的效果,或确保模型在相同配置下的表现稳定。然而,每次手动记录训练结果不仅耗时,还容易出错。为了提高效率并简化分析流程,我们可以构建一个系统,通过自动执行训练、记录训练结果并生成一张表格来总结不同实验的性能表现。
本文将逐步讲解如何实现这一自动化流程,包括修改训练脚本以记录结果、编写批量运行的 Bash 脚本,以及使用数据分析工具查看和分析最终的训练结果。
1. 修改训练脚本以自动记录训练结果
首先,我们需要确保训练结束后能够自动保存实验的关键参数(如数据集、网络结构、延迟帧数等)和模型的性能指标(如验证精度 accVal
)。将这些信息保存到 CSV 文件中,使得每次训练结束后结果都能自动追加到表格文件中,方便后续分析和比较。
实现步骤
在本例中,我们假设需要记录以下参数和结果:
nameDataset
:数据集名称nameNetwork
:网络结构类型(如 ResNet、VGG 等)numFrames
:延迟帧数 TaccVal
:验证精度
我们可以定义一个 save_results
函数,将当前实验的参数和精度追加到一个 CSV 文件中。
代码示例:定义结果保存函数
以下是 save_results
函数的实现示例,该函数可以在训练结束时自动保存训练参数和性能结果。
import csv
import os
# 定义保存结果的函数
def save_results(args, accVal, file_path="training_results.csv"):
"""
将当前实验的参数和精度追加到 CSV 文件中。
参数:
- args: 包含实验参数的字典
- accVal: 验证精度
- file_path: CSV 文件路径
"""
# 检查文件是否已存在
file_exists = os.path.isfile(file_path)
# 定义要保存的参数和结果
data = {
"Dataset": args["nameDataset"],
"Network": args["nameNetwork"],
"Frames": args["numFrames"],
"Accuracy": accVal
}
# 将数据写入 CSV 文件
with open(file_path, mode