简化深度学习实验管理:批量训练和自动记录方案

简化深度学习实验管理:批量训练和自动记录方案

在深度学习模型的训练过程中,经常需要多次运行模型,以测试不同参数组合的效果,或确保模型在相同配置下的表现稳定。然而,每次手动记录训练结果不仅耗时,还容易出错。为了提高效率并简化分析流程,我们可以构建一个系统,通过自动执行训练、记录训练结果并生成一张表格来总结不同实验的性能表现。

本文将逐步讲解如何实现这一自动化流程,包括修改训练脚本以记录结果、编写批量运行的 Bash 脚本,以及使用数据分析工具查看和分析最终的训练结果。


1. 修改训练脚本以自动记录训练结果

首先,我们需要确保训练结束后能够自动保存实验的关键参数(如数据集、网络结构、延迟帧数等)和模型的性能指标(如验证精度 accVal)。将这些信息保存到 CSV 文件中,使得每次训练结束后结果都能自动追加到表格文件中,方便后续分析和比较。

实现步骤

在本例中,我们假设需要记录以下参数和结果:

  • nameDataset:数据集名称
  • nameNetwork:网络结构类型(如 ResNet、VGG 等)
  • numFrames:延迟帧数 T
  • accVal:验证精度

我们可以定义一个 save_results 函数,将当前实验的参数和精度追加到一个 CSV 文件中。

代码示例:定义结果保存函数

以下是 save_results 函数的实现示例,该函数可以在训练结束时自动保存训练参数和性能结果。

import csv
import os

# 定义保存结果的函数
def save_results(args, accVal, file_path="training_results.csv"):
    """
    将当前实验的参数和精度追加到 CSV 文件中。
    
    参数:
    - args: 包含实验参数的字典
    - accVal: 验证精度
    - file_path: CSV 文件路径
    """
    # 检查文件是否已存在
    file_exists = os.path.isfile(file_path)
    
    # 定义要保存的参数和结果
    data = {
   
        "Dataset": args["nameDataset"],
        "Network": args["nameNetwork"],
        "Frames": args["numFrames"],
        "Accuracy": accVal
    }
    
    # 将数据写入 CSV 文件
    with open(file_path, mode
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值