1-1 决策树算法

决策树算法

机器学习中分类和预测算法的评估

  • 准确率
  • 速度
  • 强壮行
  • 可规模性
  • 可解释性

什么是决策树

判定树是一个类似于流程图的树结构:其中,每个内部结点表示在一个属性上的测试,每个分支代表一个属性输出,而每个树叶结点代表类或类分布。树的最顶层是根结点。

image

构造决策树的基本算法

image
image

熵(entropy)概念

image

 决策树归纳算法 (ID3)

1970-1980, J.Ross. Quinlan, ID3算法选择属性判断结点信息获取量(Information Gain):Gain(A) = Info(D) - Infor_A(D) 通过A来作为节点分类获取了多少信息
image

类似,Gain(income) = 0.029, Gain(student) = 0.151, Gain(credit_rating)=0.048所以,选择age作为第一个根节点
image

重复..

ID3算法描述

  1. 树以代表训练样本的单个结点开始(步骤1)。
  2. 如果样本都在同一个类,则该结点成为树叶,并用该类标号(步骤2 和3)。
  3. 否则,算法使用称为信息增益的基于熵的度量作为启发信息,选择能够最好地将样本分类的属性(步骤6)。该属性成为该结点的“测试”或“判定”属性(步骤7)。在算法的该版本中,
  4. 所有的属性都是分类的,即离散值。连续属性必须离散化。
  5. 对测试属性的每个已知的值,创建一个分枝,并据此划分样本(步骤8-10)。
  6. 算法使用同样的过程,递归地形成每个划分上的样本判定树。一旦一个属性出现在一个结点上,就不必该结点的任何后代上考虑它(步骤13)。
  7. 递归划分步骤仅当下列条件之一成立停止:
  8. (a) 给定结点的所有样本属于同一类(步骤2 和3)。
  9. (b) 没有剩余属性可以用来进一步划分样本(步骤4)。在此情况下,使用多数表决(步骤5)。
  10. 这涉及将给定的结点转换成树叶,并用样本中的多数所在的类标记它。替换地,可以存放结点样本的类分布。
  11. (c) 分枝
  12. test_attribute = a i 没有样本(步骤11)。在这种情况下,以 samples 中的多数类
  13. 创建一个树叶(步骤12)

其他算法

C4.5: Quinlan
Classification and Regression Trees (CART): (L. Breiman, J. Friedman, R. Olshen, C. Stone)
共同点:都是贪心算法,自上而下(Top-down approach)
区别:属性选择度量方法不同: C4.5 (gain ratio), CART(gini index), ID3 (Information Gain)

决策树的优点:

直观,便于理解,小规模数据集有效

决策树的缺点:

处理连续变量不好
类别较多时,错误增加的比较快
可规模性一般

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值