推荐系统重排:MMR 多样性算法

和谐共存:相关性与多样性在MMR中共舞

推荐系统【多样性算法】系列文章(置顶)

1.推荐系统重排:MMR 多样性算法
2.推荐系统重排:DPP 多样性算法

引言

在信息检索和推荐系统中,提供既与用户查询高度相关的文档或项目,同时确保结果的多样性是一个关键挑战。最大边际相关性(Maximum Marginal Relevance, MMR)是一种旨在解决这一问题的算法。本文将深入探讨MMR的工作原理、公式解析、实现细节,并通过具体案例说明其应用价值。
在这里插入图片描述


一、 背景

最大边际相关性(Maximum Marginal Relevance, MMR)算法是由Jaime CarbonellJeffrey Goldstein1998年 提出的。Carbonell 是卡内基梅隆大学计算机科学系的教授,而 Goldstein 当时是他的博士生。

在1990年代末期,随着互联网的迅速发展和数字内容的爆炸式增长,信息检索系统面临着一个新的挑战:如何在提供大量相关结果的同时避免冗余和重复。传统的信息检索方法主要关注于提高结果的相关性,即返回尽可能多的与用户查询匹配的内容。然而,这种方法可能会导致结果中存在大量相似度极高的项目,从而降低了用户体验。

此外,在文本摘要生成领域,研究者们也遇到了类似的问题——自动生成的摘要中可能包含过多重复的信息,无法有效地传达文档的主要观点。为了解决这些问题,Carbonell 和 Goldstein 提出了MMR算法,旨在平衡相关性和多样性,以提升信息检索和自动摘要的质量。

MMR最初被设计用于解决文本摘要中的重复问题,但其理念很快就被推广到更广泛的领域,如搜索引擎优化、社交媒体内容推荐、在线广告投放等。通过MMR算法,不仅可以确保推荐或检索的结果高度相关,还能增加结果的多样性,使得提供的信息更加丰富和个性化,满足用户的多样化需求。

二、算法介绍

1. 相关背景补充 – 相对补集

1.1 定义

在集合论中,相对补集(也称为差集)是指从一个集合 A A A中移除所有属于另一个集合 B B B的元素后剩下的元素组成的集合。换句话说,它包含那些仅属于集合 A A A但不属于集合 B B B的元素。如果集合 A A A和集合 B B B是两个给定的集合,那么 A A A相对于 B B B的相对补集通常记作 A ∖ B A \setminus B AB A − B A - B AB

1.2 表示方法
  • 符号表示 A ∖ B A \setminus B AB
  • 读法:A减去B 或 A相对于B的相对补集
  • 数学定义 A ∖ B = { x ∣ x ∈ A  and  x ∉ B } A \setminus B = \{ x | x \in A \text{ and } x \notin B \} AB={ xxA and x/B}
1.3 具体例子

考虑以下两个集合:

  • A = { 1 , 2 , 3 , 4 , 5 } A = \{1, 2, 3, 4, 5\} A={ 1,2,3,4,5}
  • B = { 3 , 4 , 6 } B = \{3, 4, 6\} B={ 3,4,6}

根据相对补集的定义,我们可以计算 A ∖ B A \setminus B AB

  • A ∖ B = { 1 , 2 , 5 } A \setminus B = \{1, 2, 5\} AB={ 1,2,5}

这是因为1、2和5是唯一存在于集合 A A A中但不在集合 B B B中的元素。

同样地,我们也可以计算 B ∖ A B \setminus A BA

  • B ∖ A = { 6 } B \setminus A = \{6\} BA={ 6}

这是因为6是唯一存在于集合 B B B中但不在集合 A A A中的元素。

2. MMR算法

2.1 公式

这个公式是用于最大边际相关性(Maximum Marginal Relevance, MMR)的计算,常用于信息检索和自然语言处理中,以实现搜索结果的多样化。以下是公式的详细解释:

MMR = def arg max ⁡ D i ∈ R ∖ S [ λ ⋅ Sim 1 ( D i , Q ) − ( 1 − λ ) ⋅ max ⁡ D j ∈ S Sim 2 ( D i , D j ) ] \text{MMR} \stackrel{\text{def}}{=} \underset{D_i \in R \setminus S}{\operatorna

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

进一步有进一步的欢喜

您的鼓励将是我创作的最大动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值