引言
在信息检索领域,如何高效地召回与用户需求相关的信息至关重要。Query改写召回作为一种重要的技术手段,在提升检索效果方面发挥着关键作用。同时,与在文档(Doc)侧加标签(Tag)的方式相比,Query改写召回也有着独特的优势。
一、Query改写召回的实现方式
- 基于规则的改写:通过预先设定的规则对用户输入的查询语句(Query)进行改写。其中包括同义词替换,如将“电脑”改写为“计算机”;近义词扩展,像把“美丽”拓展为“漂亮”“秀丽”等;以及缩写与全称的转换,例如“AI”改写为“人工智能”。此外,还涉及句式的调整,比如将“如何学习英语”改写为“学习英语的方法”,以此实现Query的多样化表达。
- 基于语义理解的改写:借助先进的自然语言处理技术,尤其是预训练语言模型,如BERT、GPT等,深入理解Query的语义内涵。在此基础上,生成语义相近但表述不同的改写版本。例如,对于Query“这款手机的拍照效果如何”,经过语义分析后,可能会得到“这款手机拍照性能怎样”这样的改写结果,从而挖掘出用户潜在的真实意图。
- 基于用户行为数据的改写:对用户的历史搜索行为、点击行为、浏览行为等数据进行细致分析。通过找出与当前Query相似的历史Query及其对应的改写方式,为当前Query提供改写参考。比如,若大量用户在搜索“运动鞋”后,又点击了“跑步鞋”相关的内容,那么当新用户输入“运动鞋”时,系统可将其改写为“运动鞋 跑步鞋”或者直接改写为“跑步鞋”,使改写更贴合用户的实际需求。
- 基于知识图谱的改写:依托知识图谱中丰富的实体和关系信息,对Query进行扩展和改写。当用户输入“牛顿”时,根据知识图谱中牛顿与物理学、万有引力定律等的关系,可将Query改写为“牛顿 物理学”“牛顿的万有引力定律”等,从而扩大召回范围,获取更多与牛顿相关的、不同侧重点的信息。
二、Query改写召回主要解决的问题
- 应对用户表达的多样性:不同用户对于同一事物的表述方式往往存在差异。通过Query改写,能够将用户各种不同的表述统一转化为系统可理解和处理的形式,确保无论用户使用何种表述,都能召回全面的相关信息。例如,有的用户搜索“单车”,有的搜索“自行车”,通过同义词改写,可使两种表述都能召回相关结果。
- 挖掘用户潜在意图:用户的原始Query可能较为模糊或简短,难以准确反映其真实需求。通过语义理解和知识图谱等方式的改写,可以深入挖掘用户的潜在意图。比如,用户搜索“旅游”,经过改写可能扩展为“国内热门旅游景点”“旅游攻略”等,为用户提供更精准、更符合需求的信息。
- 提升召回率:当原始Query召回的结果数量较少时,Query改写能够扩大检索范围,增加召回的数量。对于一些生僻的专业术语或用户表述不准确的情况,通过改写为常见的表述方式,可有效召回更多相关文档,提高检索的全面性。
三、Query改写召回相较于在Doc侧加Tag的优势
- 更高的灵活性:Query改写能够根据不同用户的输入实时生成多种改写版本,快速适应各种复杂的用户查询。而在Doc侧加Tag需要提前对文档进行标注,一旦标注完成,很难快速根据新的需求或用户行为进行调整。当出现新的热门词汇或概念时,Query改写可迅速将其纳入改写范围,而文档的标签可能需要人工重新标注,耗时耗力。
- 更精准捕捉用户实时意图:Query改写是基于用户当前输入的Query进行动态处理,能够更好地捕捉用户的实时意图。相比之下,Doc侧的标签是固定的,无法根据用户的实时需求进行变化。例如,用户在不同时间搜索“手机”,其意图可能分别是了解新手机发布、购买手机、查看手机评测等,Query改写可以根据用户的上下文和实时需求进行相应改写,而文档标签难以做到如此灵活地匹配用户意图。
- 降低数据标注成本:在Doc侧加Tag需要耗费大量的人力和时间对每一篇文档进行标注,尤其是在数据量庞大的情况下,标注成本非常高。而Query改写主要依靠算法和模型,虽然前期需要一定的研发和训练成本,但一旦模型建立起来,对于新的Query处理成本较低,不需要对文档进行额外的标注工作,大大节省了资源。
- 更强的适应性:Query改写可以适应不同领域、不同类型的查询,不需要针对每个领域单独建立复杂的标签体系。而在Doc侧加Tag需要根据不同领域的特点和要求,设计专门的标签体系,并且不同领域之间的标签体系很难通用,适应性较差。
四、总结
Query改写召回通过多种策略实现对用户查询的有效改写,解决了用户表达多样性等问题,与在Doc侧加Tag相比,具有灵活性高、能精准捕捉用户实时意图、数据标注成本低和适应性强等显著优势,在信息检索中具有重要的应用价值和广阔的发展前景。