[EE261学习笔记] 9+.重侧δ函数

重侧 δ {\delta} δ函数代表一类集中于一点的函数,一般地,我们将其记为 δ a {\delta}_a δa
特别地, a = 0 a=0 a=0时, δ a = δ {\delta}_a=\delta δa=δ,表示的是集中于 x = 0 x=0 x=0的函数

δ a {\delta}_a δa的三个性质:

  1. δ a ( x ) = { 0 x ≠ a ∞ x = a \large {\delta}_a(x) =\begin{cases}0 &\quad x \neq a \\\infty &\quad x=a \end{cases} δa(x)=0x=ax=a

  2. ∫ − ∞ ∞ δ a ( x ) d x = 1 \large \int_{-\infty}^{\infty} {\delta}_a(x) dx=1 δa(x)dx=1

  3. ∫ − ∞ ∞ δ a ( x ) φ ( x ) d x = φ ( a ) \large \int_{-\infty}^{\infty} {\delta}_a(x) \varphi(x) dx = \varphi(a) δa(x)φ(x)dx=φ(a)

在分布傅里叶变换中,第三条性质又可以写成配对形式:

  1. < δ a , φ > = φ ∣ x = a = φ ( a ) \large \left<\delta_a, \varphi \right>=\varphi|_{x=a} = \varphi(a) δa,φ=φx=a=φ(a)

重侧 δ {\delta} δ 函数看似不可能得到,但实际上我们可以运用极限,将某些普通的函数变为重侧 δ {\delta} δ 函数。比如我们熟悉的矩形函数 Π ( x ) \Pi(x) Π(x)

我们将矩形函数横向压缩,纵向按其反比例拉伸,可以得到函数:

1 ε Π ε ( x ) = { 0 ∣ x ∣ > ε 2 1 ε ∣ x ∣ ≤ ε 2 \frac{1}{\varepsilon } \Pi_{\varepsilon }(x) = \begin{cases} 0 &\quad |x| > \frac{\varepsilon }{2}\\ \frac{1}{\varepsilon } &\quad |x| \leq \frac{\varepsilon }{2} \end{cases} ε1Πε(x)={0ε1x>2εx2ε

两个函数 Π \Pi Π 1 ε Π ε \frac{1}{\varepsilon } \Pi_{\varepsilon } ε1Πε如下图所示

这里写图片描述
这里写图片描述

取其极限,即 lim ⁡ ε → 0 1 ε Π ε ( x ) \lim_{\varepsilon \to 0} \frac{1}{\varepsilon } \Pi_{\varepsilon }(x) limε0ε1Πε(x),则有:

性质1:

lim ⁡ ε → 0 1 ε Π ε ( x ) = { 0 x ≠ 0 ∞ x = 0 \lim_{\varepsilon \to 0} \frac{1}{\varepsilon } \Pi_{\varepsilon }(x) = \begin{cases}0 &\quad x \neq 0 \\\infty &\quad x=0 \end{cases} ε0limε1Πε(x)={0x=0x=0

性质2:

由于积分就是面积,因此从图中我们很容易就能看出矩形的面积为1,这代表着 lim ⁡ ε → 0 1 ε Π ε ( x ) \lim_{\varepsilon \to 0} \frac{1}{\varepsilon } \Pi_{\varepsilon }(x) limε0ε1Πε(x) [ − ∞ , ∞ ] [-\infty, \infty] [,]内的积分为1

性质3:

lim ⁡ ε → 0 ∫ − ∞ ∞ 1 ε Π ε ( x ) φ ( x ) d x = lim ⁡ ε → 0 ∫ − ε 2 ε 2 1 ε φ ( x ) d x (1) \lim_{\varepsilon \to 0} \int_{-\infty}^{\infty} \frac{1}{\varepsilon } \Pi_{\varepsilon }(x) \varphi(x) dx = \lim_{\varepsilon \to 0} \int_{-\frac{\varepsilon }{2}}^{\frac{\varepsilon }{2}} \frac{1}{\varepsilon } \varphi(x)dx \tag1 ε0limε1Πε(x)φ(x)dx=ε0lim2ε2εε1φ(x)dx(1)

φ ( x ) \varphi(x) φ(x) x = 0 x=0 x=0处的泰勒展开公式为:

φ ( x ) = φ ( 0 ) + φ ′ ( 0 ) x + φ ′ ′ ( 0 ) 2 x 2 + … \varphi(x) = \varphi(0)+\varphi^{\prime}(0)x+\frac{\varphi^{\prime\prime}(0)}{2}x^2+\dots φ(x)=φ(0)+φ(0)x+2φ(0)x2+

将其带入 ( 1 ) (1) (1)式中,有

原 式 = lim ⁡ ε → 0 1 ε ∫ − ε 2 ε 2 φ ( 0 ) + φ ′ ( 0 ) x + φ ′ ′ ( 0 ) 2 x 2 + … d x = lim ⁡ ε → 0 ( φ ( 0 ) + 0 + φ ′ ′ ( 0 ) 24 ε 2 + …   ) \begin{aligned} 原式 &= \lim_{\varepsilon \to 0} \frac{1}{\varepsilon } \int_{-\frac{\varepsilon }{2}}^{\frac{\varepsilon }{2}} \varphi(0)+\varphi^{\prime}(0)x+\frac{\varphi^{\prime\prime}(0)}{2}x^2+\dots dx \\ &=\lim_{\varepsilon \to 0} \left( \varphi(0)+0+\frac{\varphi^{\prime\prime}(0)}{24}\varepsilon ^2+\dots \right) \end{aligned} =ε0limε12ε2εφ(0)+φ(0)x+2φ(0)x2+dx=ε0lim(φ(0)+0+24φ(0)ε2+)

不难发现,除了第一项外,其他所有项都是 ε \varepsilon ε 的函数,因此当 ε → 0 \varepsilon \to 0 ε0 时, ∫ − ∞ ∞ 1 ε Π ε ( x ) φ ( x ) d x = φ ( 0 ) \int_{-\infty}^{\infty} \frac{1}{\varepsilon } \Pi_{\varepsilon }(x) \varphi(x) dx=\varphi(0) ε1Πε(x)φ(x)dx=φ(0)

至此,三条性质都满足, lim ⁡ ε → 0 1 ε Π ε ( x ) \lim_{\varepsilon \to 0} \frac{1}{\varepsilon } \Pi_{\varepsilon }(x) limε0ε1Πε(x) 就是一种重侧 δ {\delta} δ 函数

  • 3
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值