一、绪论知识
1、信号的描述、分类和常见的信号
- 通信系统:信源→信道→信宿
- 消息与信号:
- 消息是信号的具体内容
- 信号是消息的表现形式
- 信号处理:
- 目的:更好的进行信号传输与交换
- 方法:去除噪声与干扰,将信号变为更容易接收的形式
- 信号的描述方法:
- 数学表达式
- 图示
- 频谱描述
- 信号的分类:
- 确定性信号/随机信号
- 周期信号/非周期信号
- 连续时间信号/离散时间信号
- 典型信号举例:
- 指数信号
- 单边指数衰减信号
- 正弦信号
- 指数衰减的正弦信号
- Sa信号
- 高斯信号(钟形信号)
- 指数信号
- 信号的运算:
- 移位:时域平移
- 反褶
- 尺度变换
- 相加相乘
- 求导积分
- 阶跃信号与冲激信号:
- 单位斜变信号→求导→单位阶跃信号→求导→单位冲激信号→求导→冲激偶信号
- 冲激信号具有筛选特性,用狄拉克函数δ(t)表示
- δ(t)是偶函数
- δ(t)包含面积为1
- 冲激偶信号δ’(t):
- δ’(t)是奇函数
- δ’(t)包含面积为0
- 同样具有筛选特性,筛选结果为 -f’(t0)
2、信号的分解方法,系统模型和分类
-
信号的分解:
- 直流分量 & 交流分量
- 偶分量 & 奇分量
- 脉冲分量 & 阶跃分量
- 实部分量 & 虚部分量
- 正交函数分解:各个组成分量相互正交
- 傅里叶级数展开
-
系统的表示方法:
- 图形符号表示:电路图
- 数学公式表示:微分方程(连续系统)、差分方程(离散系统)
- 方框图表示
-
系统的分类:
- 线性/非线性:叠加性 & 齐次性
- 时变/时不变:激励和响应对时间移位反应一致
- 线性时不变具有微分特性
- 因果/非因果:因果:t0时刻的响应只与t0时刻前的输入有关
- 稳定/不稳定:输入输出有界
- 连续/离散
- 可逆/不可逆
- 集总参数/分布参数:集总参数元件(宏观电路)、分布参数元件(波导、传输线等)
- 动态/即时:动态:系统状态随时间而变化
二、连续时间系统的时域分析
1、时间域方法
- 直接求解微积分方程:
- 微分方程的建立:
- 元器件的特性约束方程
- 基尔霍夫电压/电流定律
- 微分方程的求解:
- 求齐次解:指数函数的线性组合
- 特解:只与激励函数形式有关
- 完全解:给定边界条件,确定系数,得得到完全解
- 注意需要确定初始状态:
- 物理方法:无冲激电流时,电容两端电压不发生跳变;无冲激电压时,通过电感的电流不发生跳变
- 数学方法:
- δ函数匹配法:左右两端的奇异函数平衡
- 零输入响应:内部储能引起的响应
- 零状态响应:仅由外加激励引起的响应
- 包含特解+齐次解的一部分
- 自由响应:同时依赖于起始状态和激励信号,输入为零时,自由响应不一定为0,冲激信号也会导致自由响应
- 零状态线性:起始状态为0,系统零状态响应对于激励信号呈线性
- 零输入线性:激励为0时,系统的零输入响应对于起始状态呈线性
- 微分方程的建立:
- 冲激响应:系统输入信号为冲激信号时的响应
- 冲激信号下特解为0,冲激响应是齐次解
- 由系统自身决定,反映了系统的特性
- 由冲激响应求解零状态响应
- 零状态响应 = 激励信号 卷积 冲激响应
- 卷积求解:
- 反褶
- 位移
- 相乘
- 积分
- 关于卷积:
- 代数性质:交换律、分配律、结合律
- 拓扑性质:两信号卷积后的导数(积分)等于一个的导数(积分)与另一个的卷积
- 位移性质
- 与δ函数卷积,筛选特性
- 卷积消除多径失真:
- 多径失真:接收信号包含激励信号的延时分量
- 消除方法:卷积法设计逆系统
三、傅里叶变换
1、傅里叶级数展开,狄利克雷条件:
- 狄利克雷条件:
- 间断点数目有限
- 极大极小值数目有限
- 绝对可积
- 狄利克雷条件是傅里叶展开的充分条件
- 奇异函数等不满足绝对可积的信号也存在傅里叶变换
- 傅里叶级数的形式:
- 三角函数形式
- 指数形式
- 函数对称性:
- 偶函数:sin的系数为0
- 奇函数:cos的系数为0
- 奇谐函数:偶数项sin、cos的系数都为0
- 周期信号频谱:
- 周期信号的频谱离散
- 周期越大,频谱越密,周期趋于无穷时,非周期信号,频率为连续谱
- 周期矩形脉冲:
- 矩形波信号的傅里叶变换是Sa
- 周期矩形脉冲的傅里叶变换是Sa的抽样
2、 傅里叶变换
- 傅里叶级数的缺点:
- 只能分析周期信号
- 不能分析奇异信号
- 不能研究系统性能
- 傅里叶级数→周期无穷(非周期信号)→积分→傅里叶变换
- 非周期信号包含所有频谱分量
- 傅里叶变换的属性:可逆性、对称性
- 典型非周期信号的傅里叶变换:
- 见下页
- 傅里叶变换的性质:
- 见下页
3、周期信号和抽样信号的傅里叶变换
-
周期信号的傅里叶级数和变换:
- 周期信号展成傅里叶级数:
- 两侧同时做傅里叶变换:
- 周期信号展成傅里叶级数:
-
抽样信号:
- 时域抽样:
- 抽样脉冲序列是周期信号
- 抽样信号=抽样脉冲×原信号
- 使用卷积定理
- 时域抽样等效于频域的频谱周期重复
- 类型:矩形脉冲抽样 & 冲激抽样
- 频域抽样:
- 频域抽样等效于时域的周期延拓
- 时域抽样:
-
抽样定理:
- 时域抽样定理:
- 带限信号s(t)频率在f之内,那么抽样频率最低为2f时,能够根据抽样结果完全恢复得到原s(t)
- 最低抽样频率为奈奎斯特频率
- 频域抽样定理:
- 时间受限信号时间在[-t,t]内,那么频率间隔最大为1/2t进行抽样,那么抽样后的频谱可以完全恢复得到原频谱
- 时域抽样定理:
4、如何从矩形脉冲选择它的各次谐波分量?
- 基波分量:带通滤波器
- 2w:对称方波只含奇次谐波,偶次谐波为0
- 用奇偶分量变出2倍频:
- 半波整流
- 全波整流
- 平方运算
- 乘法运算:一次谐波与三次谐波相乘
- 施密特触发器
- 跳变频率
- 数字电路
- 用奇偶分量变出2倍频:
- 3w:带通滤波器
四、拉普拉斯变换 & s域分析
1、拉普拉斯变换
- 拉普拉斯变换的优点:
- 将微分和积分运算转换为乘法和除法运算
- 初始条件自动包含在变换式里,避开0-、0+的麻烦
- 系统函数零极点分布可以直观表达系统性能的诸多规律
- 拉普拉斯变换的缺点:
- 物理概念被淡化
- 只能用于线性时不变系统
- 拉普拉斯变换不是处处存在的
- 拉氏变换存在的条件:
- 原函数分段连续而且为指数阶函数(能被一个指数的衰减趋势约束)
- 单边拉氏变换、双边拉氏变换
- 拉普拉斯算子:
- 微分用算子表示
- 不能做代数运算
- 常用的拉普拉斯变换:
- 拉普拉斯变换的基本性质:见下页
2、拉普拉斯逆变换及拉普拉斯的应用
- 拉普拉斯逆变换的求解方法
- 部分分式分解法
- 留数法
- s域元件模型分析电路:
- 将网络每个元件用s域模型代替
- 直接写出s域变换式
- 进行逆变换,即可得到时域信号
- 小结性:各种情况下问题的简化方法
- 电阻电路:代数方程
- 正弦稳态:复数代数方程
- 阶跃信号作用于一阶电路:三要素法
- 一般线性电路:s域元件模型
- 系统函数H(s):
- 系统函数定义:系数零状态响应的拉氏变换与激励的拉氏变换之比
3、系数函数零极点分布得到系统的性质
-
零极点分布决定时域特性:
- 若H(s)极点位于左半平面,则h(t)波形为衰减形式
- 若一阶极点位于虚轴上,则h(t)波形为等幅形式
- 若极点位于右半平面或二阶虚轴上,则为增长形式
- 极点相同、零点不同时,衰减趋势和振荡的频率相同,只是幅度和相位有所不同
- 特征方程行列式的根是系统的固有频率
-
零极点分布决定频响特性:
- s平面分析法:根据零极点分布图画出频响特性曲线
-
二阶谐振系统的s平面分析:
-
谐振系统:
- 应用:滤波器 & 振荡器
- 谐振电路频响特性:
-
4、全通函数 & 最小相移函数的零极点分布
-
全通函数–全通系统:
- 零极点分布:
- 极点:全部位于左半平面
- 零点:全部位于右半平面
- 零点与极点关于虚轴镜像对称
- 性质:
- 不影响幅频特性,只改变相频特性
- 零极点分布:
-
最小相移函数:
- 定义:零点仅位于左半平面或者虚轴的系统函数
- 非最小相移函数:系统函数右半平面有一个或多个零点
- 非最小相移函数可表示为最小相移函数与全通函数的级联
5、线性系统的稳定性:
-
稳定性是系统自身性质,与激励源无关‘
-
BIBO稳定性:
- 系统对于每个有界输入必然产生有界输出
- 充要条件:
-
s域极点与稳定性的关系:
- 稳定系统:极点在左半平面
- 不稳定系统:右半平面有极点,或虚轴上有二阶以上的极点
- 临界稳定系统:虚轴上有一阶极点
- 临界稳定不满足BIBO稳定
6、双边拉氏变换
- 优点:与傅里叶变换和z变换完美对应
- 缺点:变换的每一步都要注明收敛域
- 统一形式可能原函数不一样,必须注明收敛域
- 双边与单边的区别:
- 双边变换没有初值定理,其他性质相同
- 双边适合计算非因果信号响应,单边适合因果信号激励
7、傅里叶变换、单边拉氏变换、双边拉氏变换的关系
- 傅里叶变换与拉普拉斯变换的关系:
- 傅里叶变换是虚轴上的拉普拉斯变换
- 虚轴上有一阶极点,则傅里叶变换有冲激函数
- 虚轴上有多重极点,傅里叶变换出现冲激函数各阶导数
五、傅里叶变换应用于通信系统
1、傅里叶变换的性质及与之对应的功能和应用
-
-
傅里叶变换的意义:
- 系统对输入信号的每个频谱分量进行加权,加权后的各个分量再组合在一起,就是系统响应。
2、无失真传输
-
失真问题(两类);
- 使得失真尽可能小→无失真
- 故意产生失真→形成特定波形
-
失真:线性失真 & 非线性失真
-
无失真传输:
- 线性失真:幅度失真 + 相位失真
- 全通函数:幅度无失真,只有相位失真
- 无失真条件:
-
幅频响应和群延时都是常数
-
-
- 线性失真:幅度失真 + 相位失真
-
利用失真形成特定波形:
- 引入延时
- 生成升余弦脉冲
3、理想低通滤波器
- 频域特性:
- 频域矩形
- 时域Sa函数信号:非因果系统
- 阶跃响应:
- 上升时间 = 1/B,其中B为系统带宽或单边带宽
- 上升时间与带宽成反比,带宽越宽,上升时间越短
- 矩形脉冲响应:
- 两个阶跃响应的叠加
- Gibbs现象:跳变点处的峰起趋近于9%
- 增大带宽,可以使上升时间减小,但不会改变9%的过冲
- 窗函数:使波形无过冲
- 升余弦窗
- Hanning窗
- Hamming窗
- Blackman窗
- Kaiser窗
4、系统的物理可实现性
-
时域描述物理可实现性:低通滤波器
-
频域描述物理可实现性:
- 幅度满足平方可积
- Paley-Wiener准则:必要条件不是充分条件
-
希尔伯特变换的约束:
- 实虚部互相约束,不能任意给定
- 实部是虚部的希尔伯特变换,虚部是实部的希尔伯特逆变换
5、调制与解调
-
调制和解调的目的/重要性:
- 传输得更远
- 降低成本和体积
- 多路复用,为了实现同一介质传输多个信号
-
抑制载波调制:
- 调制:乘调制信号,频谱搬移
- 解调:本地波乘调制信号,频谱搬回,低通滤波
- 缺点:不发送载波,同步解调需要本地载波,接收机复杂
- 典型应用:卫星通信
-
调幅:
- 包络体现调制信号
- 解调:同步解调或者包络检波解调
- 优点:省去本地载波,简化接收设备
- 代价:增大了载波功率
- 典型应用:广播收音机
-
调频:
- 控制载波的频率
-
调相:
- 控制载波的相位
-
单边带调制:
- 只发半个边带,由于频移特性,在接收端能恢复
- 优点:节省频带
- 缺点:边带滤波器不易制作(相移法解决该问题)
- 典型应用:短波通信、跳频电台
-
残留边带调制:
- 为保证合成后可恢复,要求边带滤波器左右斜对称
- 优点:滤波器容易实现
- 典型应用:电视图像信号
6、从抽样信号恢复连续时间信号
- 冲激抽样:
- 抽样信号的频谱是原信号频谱的周期延拓
- 零阶抽样保持:
- 取值保持一段时间(用直线代替)
- 为了恢复原信号,需要通过带补偿的低通滤波器
- 一阶抽样保持:
- 两个抽样点之间连线(用斜线代替)
- 为了恢复原信号,需要通过带补偿的低通滤波器
- 欠抽样:产生混叠现象
7、脉冲编码调制:PCM
- 脉冲幅度调制:
- 将连续信号抽样,转换为脉冲序列,每个脉冲幅度与抽样点信号幅度成正比
- 脉冲编码调制:
- 将PAM信号量化为数字信号,并且进行二进制编码
- 抽样→量化→编码→传输
8、频分复用与时分复用
- 时分复用:把时域资源分割
- 码速与带宽:
- 减小传输信号失真,提高抽样率,增加量化比特数,但是这样会增加信号带宽
- 消除码间串扰:最理想是使用Sa函数码元
- 当代电信网络:
- 电话:频分复用
- 调制解调器:FSK、PSK、PAM
- ISDN:综合业务数字网
- ADSL:非对称数字用户环路调制解调器:QAM
- 集群用户
- 公共交换机
- 三网融合
六、信号的矢量空间分析
1、矢量空间和正交函数/完备正交函数
- 信号矢量空间
- 信号的正交函数分解
- 完备正交函数集
- 帕塞瓦尔定理:
- 数学解释:内积不变性/范数不变性
- 物理解释:能量守恒/功率不变
- 傅里叶变换的另一种理解:
- 复指数函数作为基函数(完备正交基)
- 傅里叶函数是原函数在基函数上投影的长度
- DCT:离散余弦变换
- JPEG编码:
- 流程:
- 原始图→分块→二维DCT→量化→(zigzag扫描)→熵编码
- 流程:
12、相关
- 能量信号:能量存在且取有限值的信号
- 功率信号:能量不存在功率存在的信号
- 相关系数:两个信号归一化之后做内积
- 相关函数/自相关函数
- 相关和卷积的关系:
- 积分运算的区别:
- 相关:不反褶,只需要移位取共轭
- 卷积:先反褶,再移位
- 积分运算的区别:
- 正弦函数和余弦函数的自相关函数都是正弦函数
- 相关函数:
3、能量谱和功率谱
-
能量谱密度:
-
-
能量谱没有相位信息,只保持了幅度信息
-
-
功率谱:
- 能量不受限,但功率受限
-
维纳-欣钦定理:自相关函数和能量谱构成变换对
-
信号通过线性系统:
- 响应的自相关 = 系统的自相关 卷积* 激励的自相关函数
4、匹配滤波器/码分复用、多址
- 目的:抑制噪声,匹配接收
- 匹配滤波器冲激响应:h(t) = e(T - t)
- 码分复用:
- 使用正交码区分各路信号
- 占用的频带、时间可以重叠
- 优点:抗干扰性好、系统容量大、接收机简单
- 码分多址传输系统:
- 两次调制:
- 信息调制
- 扩频调制
- 两次解调:
- 解扩频
- 信息解调
- 两次调制:
- 码分复用系统的缺点:
- 远近效应:离基站近的终端能干扰远的终端
5、通信专题
- 模拟通信与数字通信
- 模拟通信的缺点:
- 传输距离有限,同时放大了噪声
- 适合语音传输
- 模拟器件不易集成化,系统维护困难
- 模拟信号不易保密
- 数字通信结构:
- 调制:模数转换→信源编码→信道编码→数字调制
- 经过信道传输
- 解调:数字解调→信道译码→信源解码→数模转换
- 模拟通信的缺点:
- 信道容量:C = 2Blog2(V)
- B是信道带宽
- V是量化电平数目
- 提高信道容量的方法:
- 提高量化电平数V,但是电平间隔越小,对噪声越敏感
- 提高传输带宽B
- 信道容量不能无限提高:
- 带宽必定有限
- 实际功率有限,最大电平幅度有限,电平间隔不能太小
- 有噪声下的信道容量:
- 提高信道容量:
- 提高带宽
- 提高信噪比:提高发射机功率、减小噪声功率
- 提高信道容量:
- 点对点通信:
- 目标:提高频谱利用率,达到信道容量
- 信源编码:去除冗余降码率
- 无损编码(熵编码):例,哈夫曼编码
- 有损编码:本质是量化,损失部分信号是可接受的
- 信道编码:增加冗余抗干扰
- 发端加入冗余,收端进行校验甚至纠正
- 重复编码
- 信道编码的实质:
- 编码效率与纠错能力成反比
- 编码效率的极限是香农限
- 发端加入冗余,收端进行校验甚至纠正
- 调制解调:提高带宽利用率、适应信道特性
- 高级通信技术:
- 扩频通信
- 跳频通信
- 正交频分复用
- 优点:
- 带宽利用率高
- 频率选择性信道
- 容易实现
- 缺点:
- 功率利用率不高
- 对功放的线性要求苛刻
- 同步要求高
- 受多普勒频移影响严重
- 优点:
- 多用户接入:
- 抢占方式
- 带协商的抢占
- 非协商的抢占:博弈论
- 非抢占方式:没有冲突,保证通信质量
- 抢占方式
七、离散时间系统
1、 常见的典型序列:
- 单位样值信号
- 单位阶跃序列
- 矩形序列
- 斜变序列
- 单边指数序列
- 正弦序列
- 复指数序列
2、常系数线性差分方程的求解
- 迭代法:
- 缺点:没有闭式解
- 优点:提供了硬件实现的直观方法
- 齐次解与特解之和
- 零输入与零状态之和
- z变换法
- 状态变量法
3、离散时间的卷积与解卷积
- 零状态响应:输入序列和单位样值响应的卷积和
- 解卷积问题:
-
- 信号重建:在y(n) = h(n)*x(n)中,已知y(n)和h(n),求解x(n)
-
- 系统辨识:在y(n) = h(n)*x(n)中,已知y(n)和x(n),求解h(n)
-
八、z变换
1、 z变换的基本知识
-
z变换在离散时间系统中的作用←→拉普拉斯变换在连续时间系统中的作用
-
拉氏变换侧重于单边,因为连续系统中非因果信号和系统的应用很少;开三系统非因果有一些应用,所以单双边都兼顾
-
典型信号的拉氏变换和z变换对比:
-
z变换的收敛域
- z变换必须标明收敛域
- z变换的收敛规律
-
逆z变换的求解方法:
- 部分分式分解法:与拉氏逆变换求解类似
- 幂级数展开法/长除法
- 围线积分法/留数法
-
z变换的基本性质(挑选重要的几个):
-
-
单边z变换和双边z变换
2、z变换的分析和应用
- z变换与拉普拉斯变换的关系
- s平面上的虚轴对应于z平面的单位圆
- z变换求解差分方程:
- 利用线性和位移性将差分方程转化为代数方程
- 求解代数方程
- 对解求逆变换,得到表达式
3、离散系统的系统函数H(z)对系统分析
-
H(z)极点位置与h(n)波形的对应关系
-
由极点分布和收敛域判断系统稳定性:
- 系统稳定的充分条件:单位样值响应绝对可和
- 必要条件:收敛于包括单位圆
-
由极点分布和收敛于判断系统因果性:
- 充要条件:n<0时,h(n)=0
- H(z)收敛域包含无穷远点
-
因果稳定系统:
- 全部极点落在单位圆内
4、序列的傅里叶变换
-
离散时间傅里叶变换:
-
用途:研究离散系统频率响应特性
-
DTFT是单位圆上的z变换
-
-
离散时间系统的频率响应:
- 幅频响应、相频响应
- 几何法求频响
5、z变换的应用实例
-
数字滤波器
-
目的:对输入信号进行处理,达到改变信号频谱的目的
-
数字滤波器的频率响应,作用:对输入连续信号的频谱进行加权修正
-
分类:
- 递归式/非递归式
- 无限冲激响应IIR、有限冲激响应FIR
-
冲激响应不变法:
- 连续情形的滤波器对应到离散系统:
-
-
z变换应用实例:
- 模拟式自激振荡器:
- 正反馈放大器
- LC谐振电路或RC选频网络
- 系统函数极点位于s平面虚轴上
- 数字式自激振荡器:
- 系统函数极点位于z平面单位圆上
- 优点:体积小、标准化、可编程
- 模拟式自激振荡器:
九、反馈系统
- 反馈:利用系统的输出,控制和调整系统自身的输入,即可产生反馈效应
- 反馈的功能:调节输出跟踪输入,消除外界干扰或系统自身参数变动的影响
- 信号流图:代数方程的图形化表示
- 用一些点和支路构成的图形描述系统
- 变量可以是变换域或时域,系统可以是离散或连续时间
- 优点:图形表示和简化,能直接写出转移函数
- 性质:
- 系统与信号流图之间不是一一对应的
- 流图转置之后,转移函数保持不变
- 梅森公式(两类问题):
- 根据流图方便地求出输入与输出之间的转移函数
- 根据转移函数绘制流图
十、系统的状态变量分析
1、状态方程和输出方程
- 状态方程:
- 便于表示多输入、多输出
- 易用于非线性、时变系统
- 便于计算机处理
- 连续时间系统状态方程的求解
- 拉普拉斯变换解法
- 时域解法:矩阵指数
- 状态方程和转移函数
- 离散时间系统状态方程的求解
- 时域迭代法求解
- z变换求解
- 状态矢量的线性变换
- A B C D
- A矩阵对角化说明系统变换成并联结构
- 由状态方程判断系统稳定性:
- 连续时间:A的特征值全在s平面左半平面
- 离散时间:A的特征值全在z平面单位圆内
- 系统的可控制性与可观测性:
-
可控性:给定起始状态,可以找到容许的输入量,在有限时间内吧系统所有状态引向零状态
- 可控性只与矩阵A、B有关
- 在A对角化形式中,若B不含零元素,则完全可控
-
可观性:给定输入后,能在有限时间内根据系统输出唯一确定系统的起始状态
- 可观性只与矩阵A、C有关
- 在A对角化形式中,若C不含零元素,则完全可观
-
最小实现:只实现可观可控的部分称为最小实现
- 框图、流图和状态方程是对系统的全面描述
- 化简后的传递函数只反映了系统中可观可控的部分
-