本地部署AI大模型(非常详细)多种方法全部汇总,零基础入门到精通,看这一篇就够了

1. 使用Cherry Studio部署,适合小白

简介

Cherry Studio 内置了很多服务商,集成了超过 300 多个大语言模型。在使用过程中,你可以随意切换模型来回答问题,充分利用各个大模型的优势解决问题。目前,已经集成的常用服务商

下载链接:客户端下载 | CherryStudio (cherry-ai.com)

大模型配置

选择自己使用的大模型,配置api秘钥(需要去各自官网申请“点击这里获取秘钥”),deepSeek api地址:https://api.deepseek.com

2.使用LM Studio部署,适合小白

简介

LM Studio 是一款用于在您的电脑上开发和实验LLMs的桌面应用程序。

下载链接:Download LM Studio - Mac, Linux, Windows

设置模型目录

模型目录最好不要有中文特殊符号,最好是英文字母

下载模型

如果可以访问国外网站

镜像网站下载

https://hf-mirror.com/

下载gguf模型放到前面设置的模型目录里面

 

3.使用Ollama部署,适合有一定大模型操作基础

简介

Ollama 是一款在本地环境中运行和管理大型语言模型(LLMs)的开源工具。它为开发者、研究人员和爱好者提供了一个高效、易用的平台,能够快速实验、管理和部署最新的大语言模型。

下载链接:Download Ollama on Windows

下载模型

支持主流以及最新大模型

安装模型

下载llama3:8b,冒号前面为模型名称,冒号后面型号,也是模型参数大小。

ollama pull llama3:8b

 

运行模型 

ollama run llam3

4.使用AnythingLLM部署,适合小白

 简介

AnythingLLM 是 Mintplex Labs Inc. 开发的一款开源 ChatGPT 等效工具,用于在安全的环境中与文档等进行聊天,专为想要使用现有文档进行智能聊天或构建知识库的任何人而构建。

AnythingLLM 能够把各种文档、资料或者内容转换成一种格式,让LLM(如ChatGPT)在聊天时可以引用这些内容。然后你就可以用它来和各种文档、内容、资料聊天,支持多个用户同时使用,还可以设置谁能看或改哪些内容。支持的多种LLM、嵌入器和向量数据库。

下载地址:Download AnythingLLM for Desktop

下载模型

 

也可以Import model from Ollama or Hugging Face ,接受更丰富的大模型;

还可以搜索想要的大模型

大模型配置

有些大模型需要API Key,那就要区对应官网申请;有些不需要API Key,直接选择使用即可

向量数据库和Embedder首选项 可以使用默认的,不需要改

设置工作区

新建工作,名字自拟,这样就可以聊天了;

也可以添加训练文本,这样可以构建自己的知识库

### Ollama Cherry Studio 的介绍 #### Ollama 概览 Ollama 是一款新兴的开源大型语言模型服务工具,在人工智能领域迅速崭露头角,为用户带来了全新的本地化模型部署体验。该平台不仅兼容多种本地模型框架,还特别支持基于 Mac 设备的 DeepSeek 离线模型部署[^2]。 通过插件化设计,Ollama 支持二次开发,允许开发者构建定制化的私域 AI 助手,满足不同应用场景的需求。这种灵活性使得 Ollama 成为了众多企业研究机构的理想选择[^1]。 #### Cherry Studio (假设应为 LM Studio) 概览 LM Studio 同样是一款专注于自然语言处理(NLP)应用的开发环境。它提供了图形界面来简化机器学习模型的设计、训练评估过程。对于希望快速原型化并测试新想法的研究人员来说非常有用。此外,LM Studio 还具备良好的社区支持技术文档,帮助新手更快上手复杂的技术栈。 两者都致力于降低进入门槛,使更多的人能参与到先进的人工智能技术的研发当中去;同时也为企业级用户提供了一个强大而灵活的工作流解决方案,助力其加速产品迭代周期服务创新能力提升。 ```python # 示例代码展示如何连接到 Ollama API 获取预测结果 import requests def get_prediction(prompt, api_key="your_api_key"): url = "https://api.ollama.com/v1/predict" headers = {"Authorization": f"Bearer {api_key}"} data = {"prompt": prompt} response = requests.post(url, json=data, headers=headers) if response.status_code == 200: return response.json()["prediction"] else: raise Exception(f"Error: {response.text}") print(get_prediction("What is the weather like today?")) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值