最小生成树的性质及证明

性质一:设边 ( u , v ) (u,v) (uv)是图 G = ( V , E ) G=(V,E) G=(V,E)中权重最小的边,则 ( u , v ) (u,v) (uv)属于 G G G的某棵最小生成树。

证明①:(应用定理23.1
A A A数某个最小生成树边的子集,且 A A A不包含 ( u , v ) (u,v) (uv)
( u , v ) (u,v) (uv)是横跨割 ( u , V − u ) (u,V-u) (u,Vu)的轻边且割尊重集合 A A A,因此 ( u , v ) (u,v) (uv)对于集合 A A A是安全的, ( u , v ) (u,v) (uv)属于一棵最小生成树。

证明②:
T T T任意一个最小生成树,且 ( u , v ) ∉ T (u,v)\notin T (u,v)/T,则 T + ( u , v ) T+(u,v) T+(u,v)中包含一个环。设 f f f是环上的另一条边,则 T + ( u , v ) − f T+(u,v)-f T+(u,v)f是另一个MST,且包含 ( u , v ) (u,v) (uv)

性质二:设 T T T是图 G G G的最小生成树,设 L L L T T T中边权重值构成的有序列表, T ′ T' T是其他的最小生成树,则有 L L L也是 T ′ T' T中边权重值构成的有序列表。

性质三:设 T T T是图 G G G的最小生成树, T ′ T' T是任意一棵生成树,将所有边以非递减的次序排列,即 w ( e 1 ) ≤ w ( e 2 ) ≤ . . . ≤ w ( e n − 1 ) w(e_1)\leq w(e_2)\leq ...\leq w(e_{n-1}) w(e1)w(e2)...w(en1) w ( e 1 ′ ) ≤ w ( e 2 ′ ) ≤ . . . ≤ w ( e n − 1 ′ ) w(e_1')\leq w(e_2')\leq ...\leq w(e_{n-1}') w(e1)w(e2)...w(en1),则对于 1 ≤ i ≤ n − 1 1\leq i\leq n-1 1in1,有 w ( e i ) ≤ w ( e i ′ ) w(e_i)\leq w(e_i') w(ei)w(ei).

性质二可以应用两次性质三推出。

反证法证明性质三:
不失一般性,假设存在 i ≥ 1 i\geq1 i1,有 w ( e 1 ) ≤ w ( e 1 ′ ) w(e_1)\leq w(e_1') w(e1)w(e1) w ( e 2 ) ≤ w ( e 2 ′ ) w(e_2)\leq w(e_2') w(e2)w(e2),…, w ( e i − 1 ) ≤ w ( e i − 1 ′ ) w(e_{i-1})\leq w(e_{i-1}') w(ei1)w(ei1),但 w ( e i ) > w ( e i ′ ) w(e_{i})> w(e_{i}') w(ei)>w(ei)
因此, w ( e n − 1 ) ≥ w ( e n − 2 ) ≥ . . . w ( e i ) > w ( e i ′ ) ≥ w ( e i − 1 ′ ) ≥ w ( e i − 2 ′ ) ≥ . . ≥ w ( e 1 ′ ) w(e_{n-1})\geq w(e_{n-2})\geq...w(e_i)>w(e_i')\geq w(e_{i-1}')\geq w(e_{i-2}')\geq .. \geq w(e_1') w(en1)w(en2)...w(ei)>w(ei)w(ei1)w(ei2)..w(e1)

将任一条边 e x ′ ∈ { e 1 ′ , e 2 ′ , . . . e i ′ } e_x'\in\{e_1',e_2',...e_i'\} ex{e1,e2,...ei}加到 T T T中,形成一个环,所有边均在 { e x ′ , e 1 , e 2 , . . . e i } \{e_x',e_1,e_2,...e_i\} {ex,e1,e2,...ei}中,因为 T T T是MST,所以新加上的边一定是环上最大的,环上的其他边只能来自 { e 1 , e 2 , . . . e i } \{e_1,e_2,...e_i\} {e1,e2,...ei}

删掉 { e i , . . . e n − 1 } \{e_i,...e_{n-1}\} {ei,...en1},剩下的边会形成多个连通分支,并将所有 e x ′ ∈ { e 1 ′ , e 2 ′ , . . . e i ′ } e_x'\in\{e_1',e_2',...e_i'\} ex{e1,e2,...ei}加到 T T T中,每个 e x ′ e_x' ex的两端点均在同一个分支中,不改变之前的连通性,因此 { e 1 , e 2 , . . . e i − 1 , e 1 ′ , e 2 ′ , . . . e i ′ } \{e_1,e_2,...e_{i-1},e_1',e_2',...e_i'\} {e1,e2,...ei1,e1,e2,...ei},和 { e 1 , e 2 , . . . e i − 1 } \{e_1,e_2,...e_{i-1}\} {e1,e2,...ei1}一样有 ( n − i + 1 ) (n-i+1) (ni+1)个连通分支,但是 { e 1 ′ , e 2 ′ , . . . e i ′ } \{e_1',e_2',...e_i'\} {e1,e2,...ei}是树中的边,至多形成 ( n − i ) (n-i) (ni)个连通分支,前者拥有更多的边却形成更多的连通分支,矛盾!

(最后一部分也可以相对量化地论述)
{ e 1 , e 2 , . . . e i − 1 } \{e_1,e_2,...e_{i-1}\} {e1,e2,...ei1}形成 ( n − i + 1 ) (n-i+1) (ni+1)个连通分支,设其中 k k k个是有边的,包含顶点数为 v i v_i vi,则 ( v 1 − 1 ) + ( v 2 − 1 ) + . . . + ( v k − 1 ) = i − 1 (v_1-1)+(v_2-1)+...+(v_k-1)=i-1 (v11)+(v21)+...+(vk1)=i1,令 d i d_i di { e 1 ′ , e 2 ′ , . . . e i ′ } \{e_1',e_2',...e_i'\} {e1,e2,...ei}在每个连通分支中加的边数,有 d 1 + d 2 + . . . + d k = i d_1+d_2+...+d_k=i d1+d2+...+dk=i,根据鸽巢原理,存在 d j ≥ ( v j − 1 ) + 1 = v j d_j\geq (v_j-1)+1=v_j dj(vj1)+1=vj d j d_j dj在的连通分支中一定存在由 { e 1 ′ , e 2 ′ , . . . e i ′ } \{e_1',e_2',...e_i'\} {e1,e2,...ei}的子集构成的环,这和它是树的边集合相矛盾。

命题得证。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

u小鬼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值