(三)MNN与Opencl联合编译

在MNN与opencl进行联合编译中,需要注意一些事项:

1、在MNN中cmakelists进行修改后

2、在source/backend/opencl/core/runtime中OpenCLWarpper.cpp中文件进行修改。否则在编译过程中不报错,而在执行过程报以下错误:

OpenCL init error, fallback ..

例如我们使用全志T507的liunx系统进行开发,需要把liunx下opencl链接库进行添加和修改

static const std::vector<std::string> gOpencl_library_paths = {

#if defined(__APPLE__) || defined(__MACOSX)
    "libOpenCL.so", "/System/Library/Frameworks/OpenCL.framework/OpenCL"
#elif defined(__ANDROID__)
    "libOpenCL.so",
    "libGLES_mali.so",
    "libmali.so",
#if defined(__aarch64__)
    // Qualcomm Adreno
    "/system/vendor/lib64/libOpenCL.so",
    "/system/lib64/libOpenCL.so",
    // Mali
    "/system/vendor/lib64/egl/libGLES_mali.so",
    "/system/lib64/egl/libGLES_mali.so",
#else
    // Qualcomm Adreno
    "/system/vendor/lib/libOpenCL.so", "/system/lib/libOpenCL.so",
    // Mali
    "/system/vendor/lib/egl/libGLES_mali.so", "/system/lib/egl/libGLES_mali.so",
    // other
    "/system/vendor/lib/libPVROCL.so", "/data/data/org.pocl.libs/files/lib/libpocl.so"
#endif
#elif defined(__linux__)
    // "/usr/lib/libOpenCL.so",
    // "/usr/local/lib/libOpenCL.so",
    // "/usr/local/lib/libpocl.so",
    // "/usr/lib64/libOpenCL.so",
    // "/usr/lib32/libOpenCL.so",
    // "libOpenCL.so"
    "/gzy_mnt/SDK/aarch64-linux-gnu-7.4.1/lib64/libmali.so.0",   //添加opencl动态链接库的路径
    "/gzy_mnt/SDK/aarch64-linux-gnu-7.4.1/lib64/libOpenCL.so.2"
/*
 *  0: System32, 1: SysWOW64
 *  --------------------------------------
 *  | Real CPU /          |  x64  |  x86  |
 *  |        / Target CPU |       |       |
 *  --------------------------------------
 *  |         x64         | 0 / 1 |   1   |
 *  --------------------------------------
 *  |         x86         | Error |   0   |
 *  --------------------------------------
 *  0 / 1: 0 if OpenCL.dll (System32, 64bit on x64), otherwise 1 (SysWOW64, 32bit compatible on 64bit OS)
 */
#elif defined(_WIN64)
    "C:/Windows/System32/OpenCL.dll",
    "C:/Windows/SysWOW64/OpenCL.dll"
#elif defined(_WIN32)
    "C:/Windows/SysWOW64/OpenCL.dll",
    "C:/Windows/System32/OpenCL.dll"
#endif
};

然后在进行交叉编译,请参考之前的链接

3、使用MNN进行CPU和GPU(opencl)在全志T507(GPU:mail31),进行模型耗时对比测试.

gpu的性能还是比较低的

<think>嗯,用户的问题是关于MNN框架中的libMNNCore.so的使用说明和错误解决。首先,我需要回忆一下MNN框架的基本信息。MNN是阿里巴巴开源的轻量级深度学习推理引擎,适用于移动端和嵌入式设备。libMNNCore.so应该是其核心库文件,负责模型加载、计算图优化、算子执行等功能。 用户提到想找技术资料或解决方法,可能在使用过程中遇到了问题。首先,我应该确认用户是否参考了官方文档。MNN的GitHub仓库和官方文档是最主要的资源,里面通常有安装指南、API说明和常见问题解答。需要提醒用户查阅这些资料,并确认版本是否匹配,因为不同版本的接口可能有变化。 然后,常见问题方面,动态库加载失败是一个常见错误。可能的原因包括路径不正确、库文件缺失或依赖问题。需要建议用户检查LD_LIBRARY_PATH环境变量是否正确设置,或者使用ldd命令查看依赖是否满足。另外,编译选项是否正确,比如是否开启了GPU支持但缺少相应的驱动,这也是常见的问题点。 接下来,模型转换错误。用户可能在转换其他框架的模型(如TensorFlow或PyTorch)到MNN格式时出错。这时候需要检查模型是否包含MNN不支持的操作符,或者转换工具的参数是否正确。建议用户使用MNN提供的模型检查工具,或者简化模型结构进行测试。 然后是API使用错误,比如内存泄漏或线程安全问题。MNN的Session和Tensor对象需要正确释放,多线程环境下是否使用相同的Session也可能导致问题。需要提醒用户遵循官方示例中的资源管理方式,并确保线程安全。 性能问题方面,可能是模型未优化或硬件支持不足。建议用户使用MNN的模型优化工具进行剪枝和量化,或者检查是否启用了适当的计算后端(如OpenCL、Vulkan)。 最后,示例代码部分,提供一个简单的模型推理示例,帮助用户快速上手。同时,相关问题部分需要覆盖编译配置、模型转换、性能调优和兼容性处理等方面,这些都是用户可能进一步询问的方向。 需要确保回答结构清晰,分点说明,并且引用用户提供的参考信息中的libfacedetection库的处理方式,比如静态编译和跨平台支持,可能MNN的设计理念相似,但MNN的动态库可能需要更多依赖处理。同时,提醒用户注意平台差异和版本兼容性,这些都是解决问题时需要考虑的因素。</think>### MNN libMNNCore.so 技术解析 MNN是阿里巴巴开源的轻量级深度学习推理引擎,其核心动态库`libMNNCore.so`主要实现模型加载、计算图优化、算子执行等功能。该库在不同平台下编译时会自动适配硬件加速特性(如ARM NEON指令集)[^1]。 #### 一、常见问题及解决方法 1. **动态库加载失败** - 现象:`error while loading shared libraries: libMNNCore.so: cannot open shared object file` - 解决方法: - 将库路径加入环境变量:`export LD_LIBRARY_PATH=/your/mnn/lib/path:$LD_LIBRARY_PATH` - 检查编译时是否包含完整依赖项:`ldd libMNNCore.so` - 确认CPU架构匹配性(ARM/x86) 2. **模型转换错误** - 现象:`MNN Converter Error: Not supported op type` - 解决方法: ```bash # 使用最新版转换工具 ./MNNConvert --modelFile model.pb --MNNModel output.mnn --framework TF ``` 若仍报错,需手动添加自定义算子实现或简化模型结构 3. **API使用错误** - 内存泄漏问题需注意: ```cpp MNN::Session* session = interpreter->createSession(config); // 必须显式释放资源 interpreter->releaseSession(session); ``` #### 二、关键配置示例 ```cpp #include <MNN/Interpreter.hpp> int main() { auto interpreter = std::shared_ptr<MNN::Interpreter>( MNN::Interpreter::createFromFile("model.mnn") ); MNN::ScheduleConfig config; config.type = MNN_FORWARD_CPU; // 可改为OPENCL/Vulkan auto session = interpreter->createSession(config); // 获取输入Tensor auto input = interpreter->getSessionInput(session, nullptr); // 数据预处理及推理操作 interpreter->runSession(session); return 0; } ``` #### 、性能优化建议 1. 启用`MNN_USE_THREAD_POOL`编译选项提升多线程性能 2. 使用`MNN::Tensor::setAlign()`设置内存对齐提升SIMD效率 3. 通过`MNN::Express`模块实现混合精度计算
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值