(四)pytorch中激活函数

ReLU是常用的激活函数,其在正区间避免了梯度消失,但在负区间可能导致神经元死亡。LeakyReLU则是对ReLU的改进,允许负区间的微小梯度,减少了ReLU的神经元死亡问题。
摘要由CSDN通过智能技术生成

1、nn.ReLU()

                                        y=max\left ( x,0 \right)

绿色曲线为原函数,红色曲线为导函数。

 特点:

1)relu的导数在大于0时,梯度为常数,不会导致梯度弥散。在小于0时导数为0,当神经元激活值进入小于0,梯度为0,也就是说,这个神经元不会被训练,即稀疏性。计算方便

2)relu单元在训练中将不可逆转的死亡,导致数据多样化的丢失。如果学习率设置的太高,可能会发现网络中40%的神经元都会死掉(在整个训练集中这些神经元都不会被激活)。在神经网络中,隐含层的激活函数,最好选择Relu。

2、nn.LeakyReLU

Relu是将所有的负值都为零,相反,leakyRelu

3、

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值