使用分类标签训练弱检测器的方法(Heatmap)

总体思路非常简单,就是用一个小输入尺寸的分类器网络在输入图像上滑动。可以看作一种非常naive的检测算法,分类网络依旧对应Detection中的分类网络,没有修正bounding box位置的回归网络,没有RPL网络,没有针对多尺度的多尺度bounding box,不对输入图像做任何的预特征提取,直接在原图上进行了一个exausted search,然后针对每个类做非极大值抑制,找出每一个类的最大响应位置,然后加一个阈值消除一些假的响应即可。

提高速度的trick是将网络的输出全连接层改成卷积层,在输入图像大于预设输入尺寸时,每一个类的输出不再是一个标量,而是一个feature map,或者叫heatmap,因为只是找最大值因此softmax没用了也没法用所以丢掉。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值