pytorch学习之pytorch构建模型的流程

PyTorch是一个基于Python的科学计算库,提供GPU加速的张量计算和自动微分功能,用于深度学习模型的开发和训练。主要模块包括torch(张量和数学运算)、torch.nn(神经网络)、torch.autograd(自动微分)、torch.optim(优化器)和torch.utils.data(数据处理)。文章还展示了创建张量、定义神经网络、训练模型、保存和加载模型的基本步骤。
摘要由CSDN通过智能技术生成

PyTorch 是一个基于 Python 的科学计算库,提供了两个主要特征:第一,它是一个 GPU 加速的张量计算库,提供类似于 NumPy 的操作接口,可以在 GPU 上进行加速计算;第二,它是一个自动微分系统,可以用于深度学习模型的开发和训练。

PyTorch 的主要模块包括:

  1. torch:包含了张量数据类型、数学运算以及用于构建神经网络的函数等等。
  2. torch.nn:包含了定义神经网络层、损失函数、优化器等等的类和函数。
  3. torch.autograd:实现了自动微分功能,用于计算梯度。 torch.optim:包含了定义优化器的类和函数。
  4. torch.utils.data:用于处理数据集和数据加载的工具类和函数。
  5. torchvision:提供了常见的计算机视觉数据集、模型架构、预训练模型等等。

下面简单介绍一下这些模块的主要功能和使用方法:

1.torch:这个模块包含了很多操作张量的函数,例如张量的创建、数学运算、转换、切片等等。可以将其看作是 NumPy 的一个扩展,但是支持 GPU 加速,也支持自动微分。
2.torch.nn:这个模块提供了很多用于定义神经网络的类和函数,包括了各种不同类型的层、激活函数、损失函数等等。用户可以使用这些类和函数来构建自己的神经网络。
3.torch.autograd:这个模块实现了自动微分功能,用于计算梯度。用户只需要将神经网络中的变量设置为可求导的,PyTorch 就可以自动地计算出其梯度。在计算图中,这些变量被称为叶子节点。
4.torch.optim:这个模块包含了各种不同类型的优化器,例如随机梯度下降(SGD)、Adam、Adagrad 等等。用户可以使用这些优化器来更新神经网络的参数。
5.torch.utils.data:这个模块提供了各种用于处理数据集和数据加载的工具类和函数。例如 DataLoader 类可以用于批量加载数据,Dataset 类可以用于处理自定义数据集,Transforms 类可以用于数据增强等等。
6.torchvision:这个模块提供了常见的计算机视觉数据集、模型架构、预训练模型等等。例如可以使用其中的 ImageFolder 类来加载图像数据集,也可以使用其中的 ResNet 类来构建一个 ResNet 神经网络。

  1. 创建一个张量:
import torch

x = torch.tensor([1, 2, 3])

  1. 定义一个简单的神经网络:
import torch
import torch.nn as nn

class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.fc1 = nn.Linear(10, 20)
        self.fc2 = nn.Linear(20, 1)

    def forward(self, x):
        x = self.fc1(x)
        x = nn.functional.relu(x)
        x = self.fc2(x)
        return x

net = Net()

  1. 训练模型:
import torch.optim as optim

criterion = nn.MSELoss()
optimizer = optim.SGD(net.parameters(), lr=0.01)

for epoch in range(100):
    running_loss = 0.0
    for i, data in enumerate(trainloader, 0):
        inputs, labels = data
        optimizer.zero_grad()
        outputs = net(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()
        running_loss += loss.item()
    print('Epoch %d loss: %.3f' % (epoch + 1, running_loss / len(trainloader)))

  1. 保存和加载模型:
# 保存模型
PATH = './my_model.pth'
torch.save(net.state_dict(), PATH)

# 加载模型
net = Net()
net.load_state_dict(torch.load(PATH))

这只是PyTorch的一小部分功能,它还包括了很多其他特性,例如数据加载器、自动微分、分布式训练等。如果你需要更多关于PyTorch的帮助,可以查阅官方文档:https://pytorch.org/docs/stable/index.html。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

酒与花生米

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值