15 PyClone推断肿瘤细胞的克隆组成

29 篇文章 263 订阅 ¥9.90 ¥99.00
本文介绍了如何使用Pyclone工具进行肿瘤细胞克隆组成的推断,包括软件安装、数据处理、实际运行和结果解读。Pyclone基于贝叶斯聚类方法,处理深度测序数据,分析肿瘤的克隆结构。通过5个步骤运行分析,最后通过可视化结果理解克隆分布。
摘要由CSDN通过智能技术生成

15 PyClone推断肿瘤细胞的克隆组成

写在前面

参考资料:

  • https://bitbucket.org/aroth85/pyclone/wiki/Usage

  • http://www.bio-info-trainee.com/3964.html

  • https://www.nature.com/articles/nmeth.2883

PyClone介绍

上 一节我们提到肿瘤细组织是一个由正常细胞和肿瘤细胞组成的混合组织,而肿瘤中存在的异质性也导致了分析起来更加复杂。由癌细胞分裂的后代呈现的基因组水平 的差异,随着肿瘤进化而形成不同的克隆或亚克隆,如何根据测序数据来进行推断肿瘤的克隆和亚克隆的组成,就是 PyClone 所要解决的问题。考虑到突变频率的影响因素的复杂性:肿瘤组织中混有的正常细胞、携带该突变的肿瘤细胞的比例、每个细胞中突变的等位基因拷贝数、以及未知 的技术噪声来源,Pyclone 基于贝叶斯聚类方法,用于将一个或多个位点取样深度测序(通常大于1000x)的体细胞突变归类为推定的克隆clusters,同时估算其细胞患病率,并解释由拷贝数变异和正常细胞污染引起的等位基因失衡问题。

分析过程主要分 5 个步骤:

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

正在输入中…………

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值