巴恩斯利蕨

本文介绍了巴恩斯利蕨算法,这是一种通过迭代过程实现分型的计算机图形学技术。算法利用四个公式进行迭代,最终绘制出巴恩斯利蕨的形象。文章提到了C++的实现,并指出相比于老式的TC库,可以使用更现代的OpenGL。作者强调理解算法的思想,特别是迭代在数据结构中的高效性。
摘要由CSDN通过智能技术生成

巴恩斯利蕨C++实现

Long Space 凡之域-探索奥秘的地方

简单介绍一下巴恩斯利蕨算法,学过计算机图形学的都应该听说过巴恩斯利蕨算法,这个变形算法,是通过概率分布的不同经过若干次迭代过程,实现分型,最终得到我们所说的巴恩斯利蕨(一种蕨类植物)这里不妨先贴出最终的效果图。
这里写图片描述

巴恩斯利蕨利用了四个公式如下表

| 公式序号 |a|b|c|d|e|f|P(概率)
| --|—| —|---| —|---| —|
| 1 | 0| 0 |0|0.16|0|0|0.01
| 2 | 0.85| 0.04 |-0.04|0.85|0|1.6|0.85
| 3 | 0.2| -0.26 |0.23|0.22|0|1.6|0.07
| 3 | -0.15| 0.28 |0.26|0.24|0|0.44|0.07

x’ = ax+by+e
y’ = cx+dy+f

下面用C++实现,这里老书都是介绍graphics,但这个TC库很老了,都已经被淘汰了,which has been eliminated now, so let us use something new, OpenGL. OpenGL

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值