【表面缺陷检测】常用开源表面缺陷检测数据集 整理

表面缺陷检测数据集概览
本文汇总了多个开源表面缺陷检测数据集,包括NEUsurfacedefectdatabase、KolektorSDD、Magnetic-tiledefect-datasets等,详细介绍了数据集的样本数量、类别、标注情况及挑战。

数据集是深度学习研究的基础,开源数据集为各种方法提供了比较的基准(benchmark)

不同于经典计算机视觉任务中的 ImageNet、PASCAL VOC2007/2012 和 COCO 等数据集,表面缺陷检测并没有一个统一的,大规模的数据集,不同的缺陷检测数据集,在 样本数量正负样本比例复杂度 等方面都有很大的不同。

不同的缺陷数据集往往适用于不同的方法。

不同的检测设定下的研究往往基于不同的缺陷数据集。

这里对一些 常用的开源表面缺陷检测数据集 进行了整理汇总。

1、NEU surface defect database

热轧带钢(钢材)表面缺陷 东北大学

项目官网【之前的链接挂掉了,这是 新的地址

数据集介绍:

该数据集收集了 热轧带钢表面的6类典型缺陷

  • (rolled-in scale, RS)
  • 斑块(patches, Pa)
  • 开裂(crazing, Cr)
  • 点蚀(pitted surface, PS)
  • 包含(inclusion, In)
  • 划痕(scratches, Sc)。

每种类型缺陷各 300 个样本,总共 1800 张灰度图像,每张图像的 原始分辨率200×200 像素。对于缺陷检测任务,作者还 提供了 bounding box 标注,注明了每个图像中缺陷的类别和位置

下图展示了六种缺陷的样本图像。

在这里插入图片描述
从图中可以清楚地看出,类内(intra-class)缺陷在外观上存在较大的差异,比如划痕(最后一列)可能是水平划痕、垂直划痕、倾斜划痕等。同时,类间(inter-class)缺陷也存在相似之处,如 rolled-in scale, crazing(龟裂), and pitted surface(凹凸不平)等。

此外,由于光照和具体材质的影响,类内(intra-class)缺陷图像的灰度值也会发生变化

总而言之,NEU表面缺陷数据库包括两个challenge:

  1. 类内缺陷存在较大的外观差异,类间缺陷具有相似的方面
  2. 缺陷图像受到光照和具体材质变化的影响

下图展示了在NEW-DET上的一些检测结果示例。

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值