数据集是深度学习研究的基础,开源数据集为各种方法提供了比较的基准(benchmark)。
不同于经典计算机视觉任务中的 ImageNet、PASCAL VOC2007/2012 和 COCO 等数据集,表面缺陷检测并没有一个统一的,大规模的数据集,不同的缺陷检测数据集,在 样本数量,正负样本比例,复杂度 等方面都有很大的不同。
不同的缺陷数据集往往适用于不同的方法。
不同的检测设定下的研究往往基于不同的缺陷数据集。
这里对一些 常用的开源表面缺陷检测数据集 进行了整理汇总。
1、NEU surface defect database
热轧带钢(钢材)表面缺陷 东北大学
数据集介绍:
该数据集收集了 热轧带钢表面的6类典型缺陷:
- (rolled-in scale, RS)
- 斑块(patches, Pa)
- 开裂(crazing, Cr)
- 点蚀(pitted surface, PS)
- 包含(inclusion, In)
- 划痕(scratches, Sc)。
每种类型缺陷各 300 个样本,总共 1800 张灰度图像,每张图像的 原始分辨率 为 200×200 像素。对于缺陷检测任务,作者还 提供了 bounding box 标注,注明了每个图像中缺陷的类别和位置。
下图展示了六种缺陷的样本图像。

从图中可以清楚地看出,类内(intra-class)缺陷在外观上存在较大的差异,比如划痕(最后一列)可能是水平划痕、垂直划痕、倾斜划痕等。同时,类间(inter-class)缺陷也存在相似之处,如 rolled-in scale, crazing(龟裂), and pitted surface(凹凸不平)等。
此外,由于光照和具体材质的影响,类内(intra-class)缺陷图像的灰度值也会发生变化
总而言之,NEU表面缺陷数据库包括两个challenge:
- 类内缺陷存在较大的外观差异,类间缺陷具有相似的方面
- 缺陷图像受到光照和具体材质变化的影响。
下图展示了在NEW-DET上的一些检测结果示例。
表面缺陷检测数据集概览

本文汇总了多个开源表面缺陷检测数据集,包括NEUsurfacedefectdatabase、KolektorSDD、Magnetic-tiledefect-datasets等,详细介绍了数据集的样本数量、类别、标注情况及挑战。
最低0.47元/天 解锁文章
2万+

被折叠的 条评论
为什么被折叠?



