SPSS Modeler 图形可视化之条形图(指南 第六章)

本文介绍了如何在SPSS Modeler中创建和设置简单条形图及堆积条形图,用于分析分类变量的分布。通过分布节点操作,展示了客户流失的分布情况,并探讨不同性别间客户流失的差异。案例基于'Demo文件下的telco.sav'数据文件,通过设置选项卡和查看结果,揭示了条形图在数据分析中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述
在SPSS Modeler中,“图形”选项板提供了日常分析所需要的大量图形,从基本的散点图、直方图到热图、气泡图甚至地图可视化。前面我们学习了散点图和线图的绘制过程,今天,小编带大家一起进入条形图的世界。

条形图:一般用于分类变量的分布情况分析。

在SPSS Modeler中,主要通过“分布”节点完成条形图的绘制。

在这里插入图片描述
案例:Demo文件下的“telco.sav”的数据文件。

数据流
在这里插入图片描述
数据展示:
在这里插入图片描述

1. 简单条形图

1.1 选项卡

在这里插入图片描述
目的

使用SPSS Modeler进行探索性数据分析(EDA)可以帮助我们了解数据的基本特征和潜在模式。以下是针对 `churn.txt` 数据集的一些关键步骤和建议: ### 1. 导入数据 首先,将 `churn.txt` 文件导入 SPSS Modeler 中: - 打开 SPSS Modeler。 - 选择 `File` > `Read Data`。 - 浏览并选择 `churn.txt` 文件。 - 在弹出的对话框中设置适当的分隔符(通常是逗号或制表符),然后点击 `Finish`。 ### 2. 检查数据质量 在开始分析之前,检查数据的质量非常重要: - **缺失值**:使用 `Type` 节点来检查每个字段是否有缺失值。 - **异常值**:使用 `Analyze` > `Quality` 来识别可能的异常值。 - **数据类型**:确保每个字段的数据类型正确。例如,`Churn?` 应该是分类变量,而其他数值字段应该是连续变量。 ### 3. 描述性统计 生成描述性统计以了解各个变量的基本分布: - 使用 `Analyze` > `Descriptive Statistics` 来生成均值、标准差、最小值、最大值等统计量。 - 特别关注目标变量 `Churn?` 的分布情况,例如客户流失的比例。 ### 4. 可视化 通过可视化工具更好地理解数据: - **直方图**:为连续变量(如 `Day Mins`, `Eve Mins`, `Night Mins`, `Intl Mins` 等)生成直方图,查看其分布情况。 - **箱线图**:用于检测异常值,特别是对于通话分钟数和费用等变量。 - **散点图**:绘制不同变量之间的关系,例如 `Day Mins` 和 `Day Charge` 之间的关系。 - **条形图**:用于分类变量(如 `State`, `Int'l Plan`, `VMail Plan` 等)的频率分布。 ### 5. 相关性分析 探究变量之间的相关性: - 使用 `Analyze` > `Correlations` 来计算不同变量之间的皮尔逊相关系数。 - 关注与目标变量 `Churn?` 相关性强的变量,这些变量可能是预测客户流失的重要因素。 ### 6. 分组分析 对不同组别的数据进行比较: - 使用 `Filter` 或 `Select` 节点按 `Churn?` 进行分组,分别生成流失客户和非流失客户的描述性统计。 - 比较两组客户在各个变量上的差异,找出可能导致客户流失的关键因素。 ### 7. 建立初步模型 基于探索性分析的结果,可以尝试建立一些初步的预测模型: - 使用 `Modeling` > `Classification Tree` 或 `Logistic Regression` 来构建简单的预测模型。 - 评估模型的性能,例如准确率、召回率、F1分数等。 ### 示例流程 以下是一个示例流程,展示如何在 SPSS Modeler 中进行上述步骤: 1. **读取数据**: ```plaintext File > Read Data > churn.txt ``` 2. **检查数据质量**: ```plaintext Type > Check for missing values and data types Analyze > Quality ``` 3. **描述性统计**: ```plaintext Analyze > Descriptive Statistics ``` 4. **可视化**: ```plaintext Visualizations > Histograms, Box Plots, Scatter Plots, Bar Charts ``` 5. **相关性分析**: ```plaintext Analyze > Correlations ``` 6. **分组分析**: ```plaintext Filter > Split by Churn? Analyze > Descriptive Statistics (for each group) ``` 7. **建立初步模型**: ```plaintext Modeling > Classification Tree or Logistic Regression Evaluate > Model Performance ``` 通过以上步骤,你可以全面地了解 `churn.txt` 数据集,并为进一步的建模和分析打下坚实的基础。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值